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ABSTRACT

The problem of estimating animal abundance is common in wildlife management and environmental
impact assessment. Capture-recapture and removal methods are often used to estimate population size.
Statistical Inference From Capture Data On Closed Animal Populations, a monograph by Otis et al.
(1978), provides us with a comprehensive synthesis of much of the wildlife and statistical literature on the
methods, as well as some extensions of the general theory. In our primer, we focus on capture-recapture
and removal methods for trapping studies in which a population is assumed to be closed and do not treat
open-population models, such as the Jolly-Seber model, or catch-effort methods in any detail. The primer,
written for students interested in population estimation, is intended for use with the more theoretical

monograph.
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PREFACE

The problem of estimating animal abundance is common in wildlife management and environmental
impact assessment. Capture-recapture and removal methods are often used to estimate population size.
Statistical Inference From Capture Data On Closed Animal Populations, a monograph by Otis et al.
(1978), provides us with a comprehensive synthesis of much of the wildlife and statistical literature on the
methods, as well as some extensions of the general theory. In our primer, we focus on capture-recapture
and removal methods for trapping studies in which a population is assumed to be closed and do not treat
open-population models, such as the Jolly-Seber model, or catch-effort methods in any detail. The primer,
written for students interested in population estimation, is intended for use with the more theoretical
monograph.

In the monograph, we attempted to produce a state-of-the-art document related to model building,
rigorous statistical treatment, and exact maximum likelihood estimators of model parameters. We
developed an algorithm, or computational method, to automate model selection and implemented the
entire analytical procedure in a computer program called CAPTURE. CAPTURE contains many
features and options, including new algorithms for density estimation and simulation experiments. The
monograph was intended for biologists as well as applied biometricians. However, at recent workshops
and seminars with biologists and students, we found that they frequently did not understand the
monograph’s key points fully and therefore could not use the methods effectively.

In this primer, we present the basic concepts and methods of sampling. Readers should read Otis ef al.
(1978) for derivations of the methods and tests and for other technical material that is not included here;
we have cited specific pages and sections of the monograph to enable ready access to the relevant
material. Our emphasis here is on concepts and practical information useful to biologists.

In designing sampling studies, biologists must be aware of what the assumptions are and must make
proper transitions from model assumptions to field problems. The design of effective sampling studies
requires some familiarity both with the random (or stochastic) nature of the sampling process and with
such fundamentals as sampling variation, bias, precision, parameter identifiability, and the criteria for
selection of an estimator. We therefore have included an extensively illustrated review of important
statistical concepts; an understanding of these is fundamental to an understanding of the rest of the
material presented here. We urge a careful study of Chapter 2. Throughout the primer, figures and their
captions are used to emphasize key concepts. To further facilitate understanding of the main points, we
present the more technical material in small type; figures that involve more technical aspects are denoted
by an asterisk. On a first reading one can ignore the small type.

The primer is intended for classroom use by college seniors and graduate students. Suitable for
biologists and ecologists, it does not require substantial quantitative training beyond a course in basic
statistics. Details on the use of program CAPTURE are given by White et al. (1 978), and the uses of
some program features are given here in Appendix A. A set of questions and exercises appears at the end
of most chapters; answers are provided in Appendix B. Appropriate sections of Seber (1973) should be
considered auxiliary to the present work, and the General Reading List (Appendix C) should be consulted
for closely related material.

The theory and practice of capture-type studles have had a long history, and many people have
contributed to our present understanding of the subject. To recognize these individuals and to stimulate
the reader’s interest in capture-type studies, we have selected for special attention the people whose
contributions at the time were most significant. Although our selections involved some arbitrary
Jjudgment, we feel that readers will benefit from knowing something about each of these 21 people. We
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attempted to obtain a photograph of each person at the time he or she was active in the subject of
capture-type studies; for this reason, the quality of the photographs is not ideal in some cases. Some
photographs were made from published half-tones or small passport pictures, and one was made from a
mid 1960s South African driver’s license.

In a sobering review of a sample of the biological literature Hayne (1978) suggests that biologists
often have not thought deeply enough about the most fundamental question relating to their
research—why it is being undertaken. Unless this basic question is thought through, the material
presented in this primer can be of little value.

December 1980

G. C. White, D. R. Anderson,
K. P. Burnham, and D. L. Otis



POSTSCRIPT

One last capture-recapture example was prepared for this primer—to estimate the number of
typographical errors in the text. Each of the four authors plus the editor proofread the manuscript, thus
generating five “capture occasions.” An X matrix was constructed from the results. The values of n; were
26, 47, 59, 60, and 79, and f; values were 68, 43, 18, 7, and 7, and M, equaled 143.

Each of the five occasions was independent; that is, none of the five reviewers worked together, so
there cannot be behavioral response. However, some errors are more difficult to spot than others, so there
is heterogeneity of “capture” (typographical error detection) probabilities. Also the reviewers spent
different amounts of time proofreading, and one author’s spouse assisted in the process, so there
reasonably should be variation of capture probabilities by occasion. Thus, the appropriate model is My,
for which there is no estimator. We do not believe that Model M, or Model M,,, is at all appropriate for
this case because no behavioral response is involved, and because the estimators for these models are
dependent on the ordering of the capture occasions. For these data, no logical ordering of capture
occasions can be made. Note that the other three estimators are not dependent on the ordering of the
capture occasions. Study of the simulation results in Table N.5.b of Otis et al. (1978:129) suggests the
jackknife estimator associated with Model M, is more appropriate for the analysis than Darroch’s
estimator for Model M,. The estimate of N, was 217 with the 95% confidence interval (189, 246). Thus,
substracting the 143 errors located in the manuscript, there are still 217 — 143 = 74 typographical errors
remaining, with the 95% confidence interval (46, 103). Good luck in finding them.,
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APPENDIX A
FORTRAN 77

USER’S MANUAL
FOR PROGRAM CAPTURE

INTRODUCTION

The computations necessary to calculate many of the capture-recapture population estimates we have
described are lengthy and essentially impossible to perform without a computer. Therefore, we have
written a FORTRAN computer program to complement this primer. Input to the program was written in
a free-form and natural style to provide ease of use by the computer users. The major program input
options are described here, and a complete user’s manual is provided in White et al. (1978) for earlier
versions of CAPTURE. The material in this appendix is applicable to ANSI FORTRAN 77 versions of
CAPTURE dated 1980 or later, and except for the file-naming conventions, everything in White et al.
(1978) applies equally to ANSI FORTRAN 77 versions of CAPTURE. In addition, several
modifications have increased the capabilities of the program. The main reason for changing the program
was to provide greater portability between machines.

Overview of Program Input

The basic unit of the program is a TASK. TASK, a reserved word in the program input, specifies that
a particular set of computations or data input is requested. The computations necessary to calculate a
population estimate based on a particular model are assumed to be a TASK. Input of the X;; matrix of
captures is also a TASK. Various model estimators and hypothesis tests of the validity of the models
make up the available TASKs. TASKs are summarized in Table A.la; reserved words and phrases for
the CAPTURE program are listed in Table A.1b.

As a simple example of input to program CAPTURE, consider the job stream shown in Table A.2.
This CAPTURE run would analyze the X;; matrix shown in Table 3.1. The TITLE card specifies a title to
be printed on each page of output. TASK READ CAPTURES specifies 6 columns in the X matrix, and
the data make up an X;; matrix of zeros and ones. The DATA statement specifies an identifier for the
particular data set, also printed on each page of output for this data set. The FORMAT card specifies the
X;; matrix format on the file CAPTDT. In this case, the first three columns of the data set are the animal
identification, read with the A3 format. Then three columns are skipped. The six columns of the X;
matrix are read with the (3X, F1.0) specification, repeated six times. TASK MODEL SELECTION
causes the model selection procedure to select the model best fitting this data set, and the TASK
POPULATION ESTIMATE card produces a population estimate for the APPROPRIATE model as
determined by the model selection procedure.

Many TASKs require only one input card, for example, the following.



TABLE A.1a. TASK cards available in program CAPTURE, and the parameters and options available for
each card. Optional parameter specifications are in brackets; mutually exclusive options are in braces,
with the default value underscored if a default exists.

XY REDUCED )

TASK READ CAPTURES XY ﬁgZH;LYETE OCCASIONS= [FILE=] [CAPTURES=] [SUMMARY]

X MATRIX

Optional additional input cards are
DATA='information on data’
FORMAT="format specified’

READ INPUT DATA

TASK CLOSURE TEST [OCCASIONS=]
TASK MODEL SELECTION [OCCASIONS=]|
TASK UNIFORM DENSITY TEST [OCCASIONS=]

ALL T
APPROPRIATE
NULL
TASK POPULATION ESTIMATE JACKKNIFE | [OCCASIONS=]
REMOVAL
DARROCH
ZIPPIN

— —

ALL
APPROPRIATE
NULL
TASK DENSITY ESTIMATE JACKKNIFE INTERVAL= CONVERSION=
REMOVAL
DARROCH
ZIPPIN

From two to eight additional input cards define grids:
X= Y= [OCCASIONS=]

X= Y= [OCCASIONS=]
END OF GRID DEFINITIONS [DENSITY=] [STRIP=]

TASK SIMULATE [SEED=] [POPULATION=] [OCCASIONS=]{REPLICATIONS=| [PRINT] &
NULL
JACKKNIFE
REMOVAL ¢ [MATRIX]
DARROCH
ZIPPIN
Up to four additional input cards define capture probability structure or provide identifying information:
HETEROGENEITY=
BEHAVIOR=
TIME=
DATA=‘identifying information about simulation.’

TITLE="'a heading to be printed at the top of each page of output.’
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TABLE A.1b. Program CAPTURE reserved words

and phrases.

TITLE HETEROGENEITY
TASK BEHAVIOR
READ CAPTURES TIME
CLOSURE TEST PRINT

MODEL SELECTION SEED
UNIFORM DENSITY TEST POPULATION
POPULATION ESTIMATE  REPLICATIONS
DENSITY ESTIMATE X

READ POPULATION Y

READ DENSITY CONVERSION
SIMULATE INTERVAL

XY REDUCED END OF GRID DEFINITIONS
XY COMPLETE DENSITY

NON XY STRIP

X MATRIX ALL
SUMMARY APPROPRIATE
OCCASIONS NULL

FILE JACKKNIFE
CAPTURES REMOVAL
DATA DARROCH
FORMAT ZIPPIN

READ INPUT DATA

TASK MODEL SELECTION

A second example is a TASK card requiring only one input card, but on which additional key words may
be specified to provide an option in the computations.

TASK POPULATION ESTIMATE JACKKNIFE

This card specifies that a population estimate is desired, specifically the jackknife estimator appropriate
for Model M, Other TASK cards require that parameters be specified on the card. For example,

TASK READ CAPTURES OCCASIONS=10

indicates there were 10 trapping occasions for the data set to be read. The more complicated input
requires additional cards after the TASK card. An example is TASK DENSITY ESTIMATE, which
requires one card for each grid to specify the grid’s dimensions and location.

TASKSs may be performed in almost any order, although there is a logical order of determining which
estimator is appropriate before estimating the population or density. The captures must be read in before
any of the TASKSs that require these data can be executed.

INPUT AND ERRORS LISTING

i5 a listing at the beginning of the program, made of the input cards as they are read. Each input card is



TABLE A.2. Theinputcards needed for program CAPTURE to analyze the X, matrix in
Table 3.1. The data (X matrix) is located on file CAPTDT, while CAPTURE reads instructions

from the file CAPTIN.

INATRUCTION S wad bom flo CAPTIN

TITLE='ANALYSIS OF X MATRIX TAKEN FROM TABLE A.2'
TASK READ CAPTURES OCCASIONS=6 X MATRIX

DATA='X MATRIX FROM TABLE 3.1
FORMAT="(A3,3X,6(3X,F1.0))"

TASK MODEL SELECTION

TASK POPULATION ESTIMATE APPROPRIATE

CAPTURES rwad pom flu CAPT BT

1 1 1 1 1 0 0 25 6] 0 1 0 0 0
2 1 0 0 0 0 0 26 0 0 1 0 0 1
3 1 0 1 0 0 1 27 0 0 1 0 0 0
4 1 0 0 0 0 1 28 0 0 1 1 0 0
5 1 0 0 0 0 0] 29 0 0 1 0 1 0
6 1 1 0 0] 0 0 30 0] 0 1 0 0 1
7 1 1 0 0 0 0 I3 0 0 1 0] 0 1
8 1 0 1 0 1 1 32 0 0 0 1 0 ]
9 1 0 0 0] 1 0 33 0 0 0 1 0 0
10 1 1 1 0 0 0] 34 0 0 0 1 0 0
11 1 0 0 0 0 0 35 0 0 0 1 0 1
12 1 0 0 0 0 0 36 0 0 0 1 0 0
13 1 0 0 1 0] 0 37 0 0 0 1 0 1
14 1 0 0 1 1 0 38 0 0 0 1 1 0
15 1 0 1 0 0 0 39 0 0 0 1 1 1
16 1 0 1 0 0 0 40 0 0] 0 1 0 0
17 0 1 0 0 0 1 41 0 0 0 0 1 0
18 0 1 0 0 0 1 42 0 0] 0 0 1 0
19 0 1 0 0 1 0 43 0 O 0 0 1 1
20 0 1 0 0 0 0 44 0] 0 0 0 1 1
21 0 1 1 1 0 1 45 0 0 0 0 0 1
%% 8 } 8 8 } 1 46 0 0 0 0 0 1
0 47 0 0 0
24 0 0 1 0 1 0 0 0 1
listed with
INPUT—————

in front of the statement to separate it from the errors and warnings that also are printed. Warnings
provide the default values of parameters not specified on the preceding card, and when an option is taken
by default. So long as the default values are satisfactory, the optional parameters need not be set.

Errors usually are printed immediately after the input statement that caused an error to be detected.
However, if an earlier statement caused the error, it may not be detected until the time of listing. The
errors and warnings printed in the INPUT AND ERRORS LISTING generally concern only program
input statements. Errors resulting from poor data, such as no recaptures, are printed in the output from
the TASK.

If the program terminates properly (that is, when the last card has been read from the instructions), the

following message is printed.
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SUCCESSFUL EXECUTION

Although this message indicates that the program terminated properly, it does not mean that all TASKs
were executed. An error on a TASK card may have caused that TASK to be skipped.

Reserved Files. The program requires that instructions be read from the file CAPTIN. The default
data input file is assumed to be CAPTDT. Output is printed on the file CAPTLP.

These file conventions apply to versions of CAPTURE written in ANSI FORTRAN 77 and not to the
older FORTRAN 1V versions. If the version of CAPTURE available at your computer center is dated
before 1980, see White et al. (1978) for a description of the files needed and used by CAPTURE.

Continuations. Any card may be continued by putting an ampersand (&) as the last nonblank
character on the previous card. Up to two continuations may be used, for a total of 240 characters of
input.

Comments. The user may punch comments on any of the input cards in the space that remains
after the necessary options and parameters have been set. Any words but the reserved words given in
Table A.1b may be used. The reserved words, which specify information to the program, should not be
used because they may be unintentionally read as instructions.

Specific Task Formats

(1) TITLE=

The TITLE= card is the same as a TASK card, but without the word TASK. It provides a title to be
printed at the top of each page of output. Title changes are made by placing a TITLE card directly before
a TASK card.

Title information is specified by single quotation marks as in the following example.

TITLE="PUT YOUR INFORMATION HERFE’

Note that there are no embedded blanks between the key word TITLE, the equals sign, and the first single
quote. Blanks may appear between the two quotes, as needed. However, no single quotes are allowed in
the information because the next quote encountered after TITLE=" is taken as the end of the title.

(2) TASK READ CAPTURES

This task reads the raw data (the X;; matrix) required to select a model, estimate population size, and
so on. The program assumes that the capture histories of the animals are coded on cards in one of the
four methods discussed below. If density estimates are required, you must include the coordinates of each
trap at which the animal was captured, a process that complicates the input slightly. The coordinates of
the trap on the upper left corner of the grid should be (1,1). Coordinates of (0,0) are not permitted
because zero values signify that the animal was not captured on this occasion. The two options for
reading trap coordinates are XY COMPLETE and XY REDUCED. Option XY REDUCED is the
default input format for the program and thus is easier to use than XY COMPLETE. The standard input
of the XY REDUCED option is

animal id, occasion i, x-coordinate, y-coordinate, occasion j, x-coordinate, y-coordinate, . .



where occasion i is the number of the trapping occasion for which the animal was caught, and
x-coordinate and y-coordinate are the Cartesian coordinates of the trap in which the animal was caught.
This input allows the user to specify information only when an animal is caught. If an animal is caught
only once, the occasion, x-coordinate, y-coordinate repetition is given only once, whereas if an animal is
caught three times, the repetition is given three times. The rest of the card is ignored after the first blank
or zero set of coordinates and occasion number.

As stated earlier, the program assumes the upper left trap of the grid is numbered (1,1). Numbering
systems where other corners are labeled (1,1) can be used and will give correct estimates of population
and density. However, when the matrix of captures per trap station is printed, it will be transposed or
reflected (or both). The corner trap cannot be numbered (0,0) because zero values indicate the animal was
not captured. '

The XY COMPLETE option assumes the complete capture history of each animal is being read. The
information appears in the form

animal id; x,y coordinates for occasion 1; x,y coordinates for occasion 2; . . .; x, y coordinates Jor last
occasion.

With this option, x,y coordinates are entered on the card only when the animal is captured, with each
card representing a separate animal. When an animal is not captured on a particular occasion, the
columns are left blank. For an animal captured only once, most of the card will be blank. The number of
pairs of x,y coordinates to be read is determined from the OCCASIONS= parameter, to be discussed
later.

The third input option, NON XY, is used if the experiment is conducted without coordinates for the
traps, or if trap coordinates are to be ignored. With this option, all but the density estimates can be
computed. The general form of the input is

animal id, 1st capture occasion, 2nd capture occasion, 3rd capture occasion. . .

where capture occasion specifies the number of the trapping occasion on which the animal wz: raptured.
The number of trapping occasions is determined by the OCCASIONS= parameter, to be discussed later.
The rest of the card is ignored when the first blank or zero occasion is encountered.

The X MATRIX option assumes that the complete X, matrix is being read, as descril:ad in Otis et al.
(1978). The general form is

animal id, string of ones and zeros to signify capture history (I = capture, 0 = 1o capture).

Three parameters can be specified on the TASK card. OCCASIONS= specifies the number of
trapping occasions. For example, if the population was trapped for 7 days and the traps were checked
daily, the parameter would be set as follows.

OCCASIONS=7

Note that there can be no embedded blanks because the program is scanning for the end of specification,

signified by the first blank. This limitation is true for all parameter specifications in the program.
Remember that there can be no blanks between the key word, the equals sign, and value specification.
The other two parameters that can be specified for this TASK relate to the raw capture data input file.
The raw data are assumed to be read from file CAPTDT, using the default format (A3, 12(3F2.0)), which
means that only one set of population data can be read per run, unless a multifile data set is used. Hence,
with the FILE="name’ parameter, files other than file CAPTDT can be read, and multiple sets of data
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can be analyzed in one run. The examples provided with the program assume that a multifile data set will
be used with file CAPTDT. Note that if your version of CAPTURE is dated before 1980, a different
file-handling system is used, and you must follow the instructions given in White et al. (1978:11).

The CAPTURES= parameter specifies the number of captures per card. The default value is the
number of occasions specified if the number is 12 or less, which is consistent with the default format of up
to 12 captures per animal on one card for the XY REDUCED option. The CAPTURES= parameter is
used only for the XY REDUCED and NON XY options because the OCCASIONS parameter specifies
the number of fields to read for the other options.

In addition, summary information about the distance moved between captures can be obtained by
specifying the word SUMMARY on the TASK READ CAPTURES cards, as follows.

TASK READ CAPTURES OCCASIONS=10 SUMMARY

The program will summarize the average and maximum distances that the animal moved between
successive captures, and the average of the maximum distances moved for all animals by the frequency of
capture. This information is used to check the reliability of the estimates of density or, as described in Otis
et al. (1978), an estimate of density may be obtained based on distance moved.

Three optional cards may be included after the TASK READ CAPTURES card. The first is the
FORMAT= card, which defines the format with which to read the captures. The format is put in quotes
as in the following exampie.

FORMAT=(A3, 36 (F2.0))

This format corresponds to the default used in the program, although any of the ANSI FORTRAN 77
format conventions may be used. Format interpretation will depend on which input option is used.
Animal identification must be in the A format, and the maximum number of columns allowed depends on
the word size of the computer. For example, IBM, DEC-VAX, and Xerox computers allow 4 characters
per word; Burroughs, Univac, and Honeywell computers allow 6; and CDC computers allow 10. The x,y
coordinates and the occasion number must be read in F format for all input options. For the X MATRIX
option, the zeros and ones must be read in F format.

The second optional card is the DATA= parameter, which specifies information about the captures
read in addition to that given on the TITLE= card. For example, if a set of three grids is to be run, the
TITLE= card specifies general information about the run, whereas the three DATA= cards specify
information specific to the individual grids. The order in which FORMAT= and DATA= cards appear is
not crucial—either may precede the other.

The third optional card (and always the last) is READ INPUT DATA. Often the user does not want to
have a separate data file for the X;; matrix, but would prefer to read the captures from the input file
CAPTIN. If the card READ INPUT DATA is encountered as the last card in the TASK READ
CAPTURES input, the X;; matrix cards are assumed to follow. Data will be read from file CAPTIN until
a TASK or TITLE= card is encountered. This method of inputing data does not require that FILE= be
specified. Note, however, that a program abort will occur if the first nondata card is not a TASK or
TITLE= card.

Because the above descriptions are abstract without examples, we will now give some specifics. First,
consider an example of the XY REDUCED option with all the default values. The listing in Table A.3
represents the simplest form of the TASK READ CAPTURES statement. Although listing the entries for
each occasion on which an animal was captured in chronological order is not mandatory, we suggest that
you order them this way. Multiple cards with the same animal identification will not cause problems, but
if there is a conflict, the second card will override the first.

Table A.4 gives a second example of the XY REDUCED option, in which all parameters are specified
to illustrate input for which none of the default values apply.



TABLE A.3. Example of TASK READ CAPTURES with all the default values taken.

JTNET RUCT 30N b wad, from file CAPT IT

TITLE="EXAMPLE INPUT FOR TABLE A.3'
TASK READ CAPTURES OCCASIONS=8

CAPT URED wad prom fila CAPTHT

AOT 1 5
AO2 1 4
A0S 1 8
AO4 2 9
AOS 2 9
AO6 4 8
AO/ 410
AO8 610

62772
471 4
1

N~ NN

O 00 O
NN NN

4816
467263
3810 2
592783893
510 3

/10 7 810 ©

ODOYOWUWN WWN

TABLE A.4. Example of TASK READ CAPTURES with XY REDUCED option set, five

captures per card, with input from file MATRIX. Animal identification appears in columns
73-76.

INST RUCTIONS wad prom plo CAPTIN

TASK READ CAPTURES XY REDUCED FIL E='MATRIX ' OCCASIONS=8 CAPTURES=5
DATA='EXAMPLE INPUT FOR TABLE A.4'
FORMAT="(72X,A4,T1,5(F2.0,2F3.0))"

CAPTURES nwod pom ple MATRIL

4 8 16 6 27 7 1 AQO1
4 6 26 3 47 1 1 A0QO2
8 10 2 : AOO3
6 9 27 8 38 9 3 A004
' AQQO5

AOO6

AOQ7

7810 6 A008

[CYR NN RN
oo Nor)RN]

OBRANON ===
COWW AU
DOOUNGWWN

~No
o le
W
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Table A.5 gives an example of the XY COMPLETE option. A nondefault format illustrates the use of
two cards to record the coordinates for one animal. The default format cannot be used to read two cards
(as in the example).

Table A.6 gives an example of the NON XY option input. Note that the animal identified as AO1 was
caught on occasions 1, 3, 4, and 6, and a later card specifies that it was also caught on occasion 7.

Table A.7 gives an example of X MATRIX option. The first four columns are the animal
identification.

TASK READ CAPTURES produces a summary table of output on the INPUT AND ERRORS
listing. The listing gives the number of trapping occasions, number of different animals captured, and the
maximum x- and y-coordinates. These values will help the user to determine whether the input was coded
correctly, because mispunched cards often cause irregular x,y coordinates.

TABLE A.5. Example of TASK READ CAPTURES with XY COMPLETE option set and
multiple cards per record. The captures are read from-CAPTIN with the READ INPUT DATA
card. The TASK CLOSURE TEST stops the reading of CAPTURES.

INATRUCT ION S  nead pom  file CAPT I

TASK READ CAPTURES XY COMPLETE OCCASIONS=8
FORMAT=" (A4 ,5(2F5.0)/4X,5(2F5.0))"
DATA='EXAMPLE INPUT FOR TABLE A.5'

READ INPUT DATA

AOO1 5
A00T 6
A002 4
A002 3
AO03 8
A003
AQO4
AD04 9 2
AQ05

A005

AQ06 | g8 9
AQ06 |

AOO7 3 | 10 6
A007 10 3

AOOS |

AOO8 10 6 10 7 10 6

TASK CLOSURE TEST

7/ 2 8 1

NP WUWNON

W 00 OO0
NHEPNDON DN
O
NN



TABLE A.6. Example of TASK READ CAPTURES with the NON XY option set. A nondefault
file of MYDATA and the default format are used.

INLTRUCTIOTLS nead from fle CAPTIN

TASK READ CAPTURES NON XY OCCASIONS=8 FIL E='MYDATA'
DATA="EXAMPLE INPUT FOR TABLE A.6'

PTURES noad from fils TYLATA

1
AO2 1
A0S 1
A04 2
A0S 2
AO6 4
AO7 4
AO8 6

5

(3) TASK CLOSURE TEST

The TASK CLOSURE TEST helps to determine whether the assumption of population closure can be
made from the data read with TASK READ CAPTURES. The only parameter to be specified is
OCCASIONS=; this determines which trapping occasions are to be used in the test for closure. The
default value OCCASIONS= is all the trapping occasions. For example, suppose that a grid was trapped
for 12 days; when TASK CLOSURE TEST is run with the default value, OCCASIONS=1-12.
However, if the investigator wants to look at the assumption of closure for only the first 6 days, the input
would be TASK CLOSURE TEST OCCASIONS=1-6. Note that there are no embedded blanks around
the equal sign, because a blank signifies the end of the specification. The OCCASIONS= parameter, a
single-valued parameter, is used in TASK READ CAPTURES to specify the number of trapping
occasions. In the TASK CLOSURE TEST and in the rest of the TASKs where OCCASIONS= will be
used, a multiple-valued parameter is used to specify the trapping occasions to be analyzed. Hence, a
series of the values will be specified with no embedded blanks. Hyphens indicate “through” so that
OCCASIONS=1-5 means the numbers 1, 2, 3, 4, and 5. Slashes indicate “by,” so that OCCA-
SIONS=1-9/2 means the series 1, 3, 5, 7, and 9, that is, 1 through 9 by 2’s. Commas also may be used to
separate sequences of numbers, so that OCCASIONS=1-5,9-10,12 means the series 1, 2, 3, 4, 5, 9, 10,
and 12. '

(4) TASK MODEL SELECTION

This TASK computes the sequence of hypothesis tests described in Chapter 3. It is used to determine
which population estimator should be used. The data are those captures read by TASK READ
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TABLE A.7. Example of TASK READ CAPTURES with the X MATRIX option set. The READ
INPUT DATA card signifies to read all the cards up to the next TASK or TITLE = card.

INIT RUCT IONS nead from filo CAPTIT

TASK READ CAPTURES X MATRIX OCCASIONS=8
FORMAT="'(A4,8F1.0)"

DATA='EXAMPLE INPUT FOR TABLE A.7'
READ INPUT DATA

A00110110110

A00210110110

A0031000001

A00401100111 /
A0050 1000000

AOO6000 10000

A00700010100

A00800000111

TASK MODEL SELECTION

CAPTURES. This TASK also has only one parameter, the OCCASIONS= parameter. The purpose and
format for the parameter specification are identical to those described in the TASK CLOSURE TEST.

(5) TASK POPULATION ESTIMATE

This TASK computes population estimates for data read by TASK READ CAPTURES. The
population estimators desired are specified by using any or all of the five key words: NULL,
JACKKNIFE, DARROCH, REMOVAL, and:ZIPPIN. If all population estimators are desired, the key
word ALL may be used. Usually the biologist is unsure of which estimator is appropriate until after he
has reviewed the hypotheses testing output. To avoid multiple runs, the key word APPROPRIATE may
be used to instruct the program to calculate the estimator selected in TASK MODEL SELECTION.
However, the TASK MODEL SELECTION must have been run for the grid being analyzed. Other
estimators may be specified with APPROPRIATE, as shown below.

TASK POPULATION ESTIMATE APPROPRIATE NULL

If the NULL estimator is not selected as the appropriate one, two population estimates will be made.
The NULL estimator, derived from Model M, in Chapter 3, is described as null because none of the

three possible sources of variability is assumed to be operating. The JACKKNIFE estimator is

appropriate for Model M,, where the probability of capture varies by animal. The DARROCH estimator



is derived from Model M,. The REMOVAL estimator is the generalized removal estimator derived from
Model M. The ZIPPIN estimator, a special case of the REMOVAL estimator, is derived from Model
M, in Chapter 3.

This TASK also has available the OCCASIONS= parameter. Use and format of this parameter are
identical to those described for TASK CLOSURE TEST. The OCCASIONS= parameter in this TASK
is used to look at changes in population during the trapping period.

(6) TASK UNIFORM DENSITY TEST

This TASK tests the homogeneity of the distribution of captures from the grid read by TASK READ
CAPTURES. A matrix of captures by trap station is used to indicate possible trends in density within the
grid. Also, the grid is collapsed by rows of traps, a chi-square test is constructed, and the grid is then
collapsed by columns. This TASK also has the OCCASIONS= parameter. Its use and format are
identical to those described in the TASK CLOSURE TEST. The matrix output from this TASK is
difficult to interpret if the upper left trap is not labeled (1,1). No output can be produced when the data
are read with NON XY or X MATRIX formats.

(7) TASK DENSITY ESTIMATE

This TASK computes an estimate of animal density based on the method presented in Chapter 5. An
option, several parameters, and additional specifications cards are required.

The option determines the population estimator to be used to estimate the naive density of each grid.
The five option key words are NULL, JACKKNIFE, DARROCH, REMOVAL, and ZIPPIN. If all
population estimators are desired, the key word ALL may be used. If the estimator selected by TASK
MODEL SELECTION is desired, the key word APPROPRIATE may be used.

Two parameters also must be specified on the TASK card. The first parameter, TRAP INTERVAL=,
may be shortened to INTERVAL=, It specifies the distance between traps for the grid. For example, if
traps are set on a 15-m grid system, TRAP INTERVAL=15 or the shorter form, INTERVAL=15,
would be used. The default is INTERVAL=15.

The second parameter, which converts from linear distance to area, is UNITS CONVERSION= , or
a shorter form CONVERSION= . For example, if the linear distance between traps is measured in
meters, then CONVERSION=1 results in animals/m?, whereas CONVERSION=10000 results in
animals/ha. To convert from feet to acres, UNITS CONVERSION=43560 would be used; that is,

43 560 ft* = 1 A. The default is CONVERSION=10000. As a final example, if traps were placed 30.5 m
(100 ft) apart, but density is to be in hectares, the interval is entered in meters, INTERVAL=30.5, and
the default of CONVERSION=10000 is used.

Grid definition cards follow the TASK card. Each grid card must specify values for two parameters:
X= and Y= determine the range of x- and y-coordinates for the grid, respectively. There can be no
embedded blanks in the specification. For example, a card with

X=5-9 Y=3,8

specifies a 5 by 6 grid with lower left corner at (5,3). Either a hyphen or comma (but not a blank) may be
used to separate the values. Labels for the grids punched on the card, such as INNER, MIDDLE,
OUTER, and so on, help to interpret the output and will not interfere with the parameter specification.
Each grid card has the optional OCCASIONS= parameter, the use and format of which are identical to
those described in the TASK CLOSURE TEST.

As many as eight grid cards may be specified. The order in which they appear is not important,
although if they are ordered by increasing grid size, the output is easier to interpret. The naive density
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estimates are expected to decrease with increasing grid size, and the user can easily note grids that are
inconsistent with this pattern if the grid cards are ordered by increasing size.
The last card required is the

END OF GRID DEFINITIONS

card, which specifies the end of the input cards required by this TASK. In addition, two optional
parameters, DENSITY= and STRIP=, may be set to provide initial values for density and strip width
needed to solve the density estimation problem. Initial values should be provided when the user can
estimate the value, or when the program has not converged with default values. Default values are
calculated from the data, but will not always be close to the final values.

Table A.8 gives an example of input for the TASK DENSITY ESTIMATE. The trap grid is 15 by 15,
with 30 ft between traps. Notice the word FEET is placed on the card as a comment, because it is not
recognized by the program. To obtain density in acres, CONVERSION=43560 is specified. All five
population estimators are to be used. Three nested grids are used, with the largest grid being the total.
Default values are for initial values of density and strip width.

(8) TASK SIMULATE

This task is used to simulate a capture-recapture experiment. As described in Chapter 7, a simulation
may be used to determine the sample sizes needed, or the effect that not meeting an assumption would
have on an estimator.

Tables 17-19 in Otis et al. (1978:60-62), generated by using TASK SIMULATE, provide the user with
an example of the output. This task requires much input. Five parameters may be set on the task card.
First, the SEED= parameter provides a random integer used as a starting value to generate random
numbers between zero and one. Although this seed usually is somewhat machine specific, a 5- or 7-digit
odd integer usually will suffice. The default value is 1234567. The system random number generator is
used by the program, so the value of the seed will depend on the type of machine. Therefore the local
documentation should be consulted to determine the choice of a seed. A second parameter,
POPULATION=, specifies the size of population to be simulated. The default value is 400, with a
maximum value of 1000 allowed. OCCASIONS= specifies the number of trapping occasions. The
default value is 7, with a maximum of 31 allowed. A third limitation is that POPULATION times
OCCASIONS must be less than 4000. REPLICATIONS= specifies the number of experiments
(replications) to be simulated. The default value is 50, with no maximum. The number of replications will
determine the user’s confidence in the output, that is, how precise the estimates are. These parameters
may be specified in any order.

TABLE A.8. Example input for TASK DENSITY ESTIMATE. TASK READ CAPTURES must
have already been executed.

INSTRUCTIONSD naad pom flo CAPTIN.

TITLE='EXAMPLE INPUT FOR TABLE A.3'

TASK DENSITY ESTIMATE INTERVAL=30 FEET CONVERSION=43560 ALL
INNER CRID X=5-9 Y=5,9

MIDDLE CGRID X=3,11 Y=3-11

TOTAL GRID X=1,15 Y=1,15

END OF CGRID DEFINITIONS



In addition, a PRINT option sets a switch that results in a complete printed output for each
experiment. If the user is interested in the MODEL SELECTION output, specifying PRINT will cause it
to be printed. Beware, however, of the amount of output that will be printed when the number of
REPLICATIONS is large. Do not use PRINT when more than 10 replications are specified. If PRINT is
not specified, only the table of summary statistics for the simulations will be printed. This table requires
only one page of output, no matter how large the number of REPLICATIONS is. However, more time
will be required as the number of REPLICATIONS is increased. We suggest that approximately 100
replications can be expected to provide some useful information. If PRINT is specified, the option X
MATRIX may also be specified to have the X;; matrix listed in the output.

The sixth option that may be set in the TASK SIMULATE card preselects one of the five estimators:
NULL, JACKKNIFE, REMOVAL, DARROCH, and ZIPPIN. Only one estimator may be preselected.
Normally, TASK SIMULATE selects the appropriate estimator based on the results of TASK MODEL
SELECTION. By specifying one of the five estimators, the user is telling TASK SIMULATE not to use
TASK MODEL SELECTION, but to go directly to the estimator specified to obtain an estimate. Should
the user want to compare two estimators for the same sets of data, two TASK SIMULATE runs must be
made, both with the same seed specified.

The most difficult part of the input to TASK SIMULATE is specifying the structure of the probability
of captures for the population. Three additional cards may be used for this purpose. The HETER-
OGENEITY= card specifies a number of individuals and their probability of capture, followed by
(optionally) a second number of individuals and their associated probability of capture, and so on. In the
following example,

TASK SIMULATE POPULATION=150 SEED=4119453 REPLICATIONS=50 OCCASIONS=10
HETEROGENEITY=50,0.5,65,0.3,35,0.1

50 animals have 0.5, 65 have 0.3, and 35 have 0.1 probability of capture. This example specifies a total of
150 animals in the population; this value must equal the value specified for POPULATION= on the task
card. If only the above card is used to provide capture probabilities, a Model M,, experiment will be
conducted. There are no embedded blanks in the HETEROGENEITY= card.

A Model M,, experiment is indicated if a BEHAVIOR= card is included with a HETER-
OGENEITY= card, as in the following example.

TASK SIMULATE SEED=4491935 POPULATION=200 OCCASIONS=10 REPLICATIONS=100
HETEROGENEITY=100,0.5,100,0.3
BEHAVIOR=200,1.5

In this example, 100 animals have first-capture probability of 0.5, and 100 animals have first-capture
probability of 0.3. However, recaptures are influenced by the values on the BEHAVIOR= card. In this
example, all 200 animals will have recapture probability of 1.5 times their first-capture probability. If the
behavior card had been

BEHAVIOR=50,1.5,50,0.5,50,1.5,50,0.5

one-half of each of the two groups of animals specified on the HETEROGENEITY= card would have
increased recapture probabilities, and one-half would have decreased probabilities. As with the
HETEROGENEITY= card, the total number of animals specified must equal the value specified on the
TASK card, and no embedded blanks may occur.

A third card for specifying capture probabilities is the TIME= card. The format is different from the
above cards. The input
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TASK SIMULATE SEED=2288319 OCCASIONS=5 POPULATION=500 REPLICATIONS=30
TIME=0.9,0.5,0.3,0.5,0.5

specifies that the capture probability on occasion 1 is 0.9, on occasion 2 is 0.5, and so on. This is a Model
M, experiment. The number of values specified must be equal to the number of occasions specified on the
TASK card.

As with the HETEROGENEITY= and BEHAVIOR= cards, the TIME= card will interact with the
others through a multiplication process. For example,

TASK SIMULATE POPULATION=200 OCCASIONS=4 REPLICATIONS=100
TIME=0.5,0.4,0.5,0.4 ‘
BEHAVIOR=100,1.5,100,0.75

results in a first-capture probability of 0.5 for all animals on trapping occasion 1. However on occasion 2,
animals not yet captured will have a capture probability of 0.4. Those captured on occasion 1 will have a
recapture probability of either (1.5)0.4) = 0.6, or (0.75)(0.4) = 0.3, depending on whether the animal is
among the first or second half of the 200 animals in the population. This process continues for the five
trapping occasions, providing a Model My, experiment.

The last example is one in which all three types of cards are used to simulate a Model M, experiment.
The input

TASK SIMULATE POPULATION=200 OCCASIONS=4 REPLICATIONS=50 SEED=459761
TIME=0.9,0.8,0.9,0.8

HETEROGENEITY=100,0.9,100,0.5

BEHA VIOR=50,0.75,50,1.3,50,0.75,50,1.3

means that the initial capture probability on occasion 1 is (0.9X0.9) = 0.81 for the first 100 animals, and
(0.9X0.5) = 0.45 for the second 100 animals. The BEHAVIOR= card has no effect on capture
probabilities on the first occasion because none of the animals are recaptured. However, on occasion 2,
the behavior structure is incorporated. If the animal is a recapture its probability will be either
(0.8)(0.9)(0.75) = 0.54, or (0.8)(0.5X1.3) = 0.52, depending on whether it is in the first or third group of
50 animals, or in the second and fourth group of 50 animals, respectively. This process continues for the
four occasions, and the results are given in Table A.9.

Specifications for Model M, can be accomplished in two ways. Both of the following TASKs specify a
constant capture probability of 0.5 for the entire population and request that the NULL estimator be
selected.

TASK SIMULATE SEED=45763 POPULATION=100 REPLICATIONS=25 &
OCCASIONS=5 NULL

HETEROGENEITY=100,0.5

TASK SIMULATE SEED=45763 POPULATION=100 REPLICATIONS=25 &
OCCASIONS=5 NULL

TIME=0.5,0.5,0.5,0.5,0.5.

In addition to the four cards described above, a DATA= card can be used to specify identifying
information about the simulation. The format is identical to that given in TASK READ CAPTURES.
This card may appear anywhere among or after the three cards used to specify capture probabilities.



Other Tasks

Several other tasks listed in White et al. (1978) are not described in this Appendix. The FORTRAN

77 version of CAPTURE supports them, but we do not encourage their use.

TABLE A.9. Capture probabilities for each trapping occasion and

capture or recapture status for the example input to TASK

SIMULATE.
Animals First Capture Recapture
Trapping Occasion 1
1-50 (0.9)(0.9)=0.81
51-100 (0.9)(0.9)=0.81 -
101-150 (0.9)(0.5)=0.45
150-200 (0.9)(0.5)=0.45 -
Trapping Occasion 2
1-50 (0.8)(0.9)=0.72 (0.8)(0.9)(0.75)=0.54
51-100 (0.8)(0.9)=0.72 (0.8)(0.9)(1.3) =0.94
101-150 (0.8)(0.5)=0.40 (0.8)(0.5)(0.75)=0.30
151-200 (0.8)(0.5)=0.40 (0.8)(0.5)(1.3) =0.52
Trapping Occasion 3
1-50 (0.9)(0.9)=0.81 (0.9)(0.9)(0.75)=0.61
51-100 (0.9)(0.9)=0.81 (0.9)(0.9)(1.3) =1.05"
101-150 (0.9)(0.5)=0.45 (0.9)(0.5)(0.75)=0.34
151-200 {0.9)(0.5)=0.45 (0.9)(0.5)(1.3) =0.59
Trapping Occasion 4
1-50 (0.8)(0.9)=0.72 (0.8)(0.9)(0.75)=0.54
51-100 (0.8)(0.9)=0.72 (0.8)(0.9)(1.3) =0.94
101-150 (0.8)(0.5)=0.40 (0.8)(0.5)(0.75)=0.30
151-200 (0.8)(0.5)=0.40 (0.8)(0.5)(1.3) =0.52

*Program CAPTURE will reduce values greater than 1.0 to a capture
probability of 1.0.
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APPENDIX B
ANSWERS TO QUESTIONS
AND EXERCISES

Chapter 1

1. Yes. Each animal can have its own unique probability of capture on each occasion, and this can
change after first capture. .

2. Yes. Any summary statistic can be computed from the X matrix.

3. Model M, is not often used in real population work because it makes assumptions that are rarely
valid, for example, equal catchability. Moreover, the estimate of N is poor when these assumptions are
violated. ‘

4. No. It is extremely important. The biologists must consider fully both demographic and geographic
closure before conducting a trapping program. Without geographic closure, N is not even defined and,
therefore, N is difficult to interpret.

S.a.t=7,j=1,...,t

b. n, =3
n,=>5
n;, =3
n,=3 These are merely column totals in X:
ns =3 N
ng = ny =2 X .
n, = =1
¢. u, =3 = n, (always).
u, = 4.

d. They are either trap happy (Model M) or they are animals that have a high capture probability
(Model M,). You could argue that animal 6 is trap shy, because it was not captured on any of the
5 nights after its first capture. ;

e. M,,, = Mg = 7 animals; 7 distinct animals were caught at least once during the study.

f. M, = 0; there are no marked animals at the first trapping occasion.

6. No. This situation is not encompassed by Model M.

7. No. Under closure, S =1 (no deaths).

8. These sampling methods will provide only an estimate of the parameter N of interest. Tell him to
drain the pond and count the fish if he must know the exact population size.

9. The estimators p and N are closely coupled. The estimates of capture probabilities in the model and
the estimate of N are directly related. A good estimate of population size depends on good estimates of
capture probabilities. Finally, if p is small, few data will be available for analysis. All the methods perform
better if p is large.

10. If you do, you are hallucinating.

11. Very general models usually do not have estimators (for example, Model My,,), because of the large
number of parameters they require. Furthermore, use of a model that is too general will lack the precision
that one desires. For example, if you conducted a tutorial ball and urn experiment, the proper model
would be M,. The estimator N from this model would have good properties, and the estimated sampling



variance {discussed in detail in Chapter 2) would be small. However, if the ball and urn sample data were
analyzed under the more general Model M,,, the estimator N would still be unbiased, but the sampling
variance would be substantially larger.
12. a. t = 3, the number of trapping occasions.

b. M,,, = 20, the number of different animals captured.

c. n; =7,n, = 11, and n, = 11, the sum of each column of the X matrix, respectively.

d. 29 (= 7+ 11 + 11), the total number of captures.

e. u;=7u,=9,u;=4.

f.f,=13,f,=5,f;=2. (Notethat M,,, = f; + £, + f5 = u; + u, + u; = 20.)

g 1EO,M2:7,M3=16,andM4;Mt+1=20.

h = 23.

L. ml_O m, =2, and m; = 7.
Jom. —9(— 1+ my + my).

Chapter 2

1. No. See, for example, the equation for Nfrom Model M, in Otis et al. (1978:106 ).

2. Models form the basis from which estimators of parameters can be derived by providing a
mathematical expression of the assumptions in terms of parameters. Some parameters such as annual
survival rates, cannot be “observed,” “measured,” or “‘counted,” and models form a basis for estimating
them. Estimation procedures developed without an explicit underlying model are termed ad hoc.

3. No. It is still just that—an ad hoc approach.

4. This is difficult to say, as these answers depend on many factors. As a rough guide, a cv of 10-15%
might be useful for research. Management-oriented studies might provide useful results, if the cv were as
large as 20-50%, or even larger in some cases.

5. Study 1, unbiased, precise.

Study 2, biased, precise.
Study 3, unbiased, not precise.
Study 4, biased, not precise.

6. T, is preferred, because it will reject a false null hypothesis with probability 0.89.
Normal, chi-square, F, t, z.

8. Hg: the model fits the data.

H,: the model does not fit the data.

9. A true null hypothesis may be reJected (a Type I error) or a false null hypothesis may not be rejected
" (a Type II error). ¢ c
10. a. 95% C. L = 6 + 1.96 se(),

=141 + 1.96 X 13.1,
= 115.32 to 166.68.
b. It is unlikely that 6 = 95 because this value is far outside the interval.
c. 8= 135 is very plausible: it is close to 8 and well within the confidence interval.
11. a. Yes. Hy: 6 =95. H,: 9+ 95
and Hy: 6 =135 H,: 06+ 135.
b. z = (6 — )/3e(@) = (141 — 95)/13.1 = 3.51,
z = (0 — 8)/5e() = (141 — 135)/13.1 = 0.46.
c. The test statistic z is distributed normally with a mean of zero and a standard deviation of one. If
the significance level of the tests is chosen as 0.05, we can see from Fig. 2.11 that the null
hypothesis 8 = 95 is rejected, while the null hypothesis 6 = 135 is not rejected.

=
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12. Nothing. Without a measure of precision, nothing can be inferred about the true population sizes of
the two areas. Tell your colleague to get his act together.
13. a. Lake bass in Wabo tributary of Lake Powell.

b. A census seems impossible—it is better to decide on a sampling method that will provide valid

inferences from the sample to the population.

¢. Population size of “adult” bass—fish capable of breeding.

d. Capture-recapture or removal sampling should be considered.

e. If N, and N, are the true population sizes before and after drilling, the hypotheses might be

Hy: N, =N,
H,:N, > N,.

14. No. This is a common misinterpretation of the meaning of a confidence interval. The correct
inference is that if the identical study were repeated a large number of times, 95% of such intervals would
cover the true parameter.
15. You would conclude that the null hypothesis is false, which is incorrect.
16. a. cv = 0.13, 0.18, 0.22, 0.16, and 0.19, respectively. -

b. Yes, cv’s of about 20% are reasonable, and each estimate is close to the true parameter value.

c. Probably not. The coefficients of variation are fairly large compared to the actual changes in the

population.

17. Until computers became widely available about 10 years ago, approximations had to be made so that
the estimation could be done on simple calculating machines.
18. No. However, the more that is known, the better the understanding and interpretation can be.
19. The estimator may be biased, the estimated sampling variance may be too small, or the sample size
may be too small. (The normality assumption may not be satisfied.)
20. You can conclude that there is strong evidence that H is false, because if the null hypothesis were
true you would expect to observe the data you collected only 7 times in 1000 studies. This is very
unlikely, so you re!'ect H,.
21. se(N) = y/var(N) = /625 = 25.
22. No. We find large biases; the average estimate, computed from the estimator under Model M,, differs
greatly from the parameter N.

Chapter 3

1. No. Equal probability of capture is not necessarily achieved by only a high level of trapping effort.
The behavior of the animal also is involved.

2. Yes, often very much so.

3. No, although a removal estimator could be used. Unfortunately, a paper was published claiming that
for t = 2, N could be estimated by the Petersen-Lincoln method even when there were no captures (Bell
1974). |

4. No. It is impossible to get enough captures and recaptures to test assumptions and compute reliable
estimates of N,. ‘

5. Basically, no. If the average capture probability p, for that trapping occasion is known, then N=
n,/p,, but in practice p, will not be known.

6. No.

7. Model M,. Yes, if sample sizes are sufficient.

8. All except the number of days of trapping.

9. Model M, cannot fit these data. Increasing the trapping effort over time will cause average daily
capture probabilities to increase, hence to vary with time. Therefore, Model M, might be the true model,
but neither M, nor M, can be the true model.



10. (b).

11. No. ML estimates under these models do not exist. One might impose additional assumptions and
then obtain an estimator; however, this would change the model. Also, a nonparametric approach might
be used to produce an estimator.

12. No. Model M, is not at all robust. If sample size is small, the power of tests of assumptions is low,
and often M, will appear to fit. This situation (a Type II error) is serious, because M, is very poor if its
assumptions are violated.

13. Because N,, (the estimator under Model M,) is much more robust than N,.

14 No. A completely general statistical test for closure is not possible.

Chapter 4

1. Your answer should be an emphatic “No.”

2. The most serious defect is that the assumption of constant capture probability cannot be tested, and
if that assumption is false the estimator based on it is biased. Even if the constant capture probability
model is true, the estimate of N will be very imprecise unless capture probabilities exceed 0.40.

No.

Yes. Animals are “removed” from the population by marking them.
Yes, because there is additional information from recaptures.

We certainly hope not.

7. Closure will fail; that is, animals from outside the grid are often attracted by the “vacuum” left by
removed animals. A

8. If the removal is accomplished by marking, it may be an acceptable plan if the population is large
enough, say 750. If removal is by physical detachment, relocations, etc., the proposal is likely to be
politically unacceptable. If the removal involves killing the snails, the biologist is in trouble.

9. No. There is clearly no meaningful decline in the numbers removed over occasions 1 to 5. This study
has failed.

10. a. Each row of the X matrix has exactly one 1 in it, and the remaining entries are zero. In the first 68

rows, the 1 is in column (occasion) 1. In the next 41 rows, the 1 is in column 2. Then there are 25
rows all with a 1 in column 3, and finally 15 rows with a 1 in column 4. The total matrix is 149
rows by 4 columns.

b. The study results are acceptable; by looking at the decrease in the removals, we can expect a
reasonably precise estimate of N if the constant capture probability model fits.

¢. The simplest “quick and dirty” estimate of N is M = 149, which, of course, will be low. The next
quick estimate is to use occasions 1 and 2 only and Eq. (4.1),

S s

R=— b 68 o

I —u/u;, 1-—41/68
This estimate would suffice to satisfy our curiosity while we still were in the field, but a full-blown
analysis requires testing assumptions. We leave it to the reader to apply program CAPTURE to
these data. ’

11. No. The results will be garbage. The expected removals are E(u,) = 5, E(u,) = 4.75, and E(u,) =

4.51.

12. We recommend a capture probability p of at least 0.2, and p > 0.3 is needed to be sure the results will

be reliable. ‘

13. Closure has failed after occasion 3; animals not originally in the population are moving into it.

14. It will be worthless—and very misleading if presented without the evidence from the data that closure

has failed.
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15. There will be N — (u, + . .. +u,_,) individuals left in the population on the j*" removal sampling. The
average capture probability of these remaining individuals is p;. If capture probabilities vary in the
population, due to innate heterogeneity, then on the first sample individuals with the higher capture
probabilities tend to be caught. The individuals remaining (uncaught) on the second removal occasion
therefore will have, on the average, lower capture probabilities. Thus, we have p, > P, By the same
argument, the even fewer numbers of individuals remaining after the second removal sample again have
smaller average capture probability p,, compared to P,.

16. Capture probabilities of fish vary greatly by species, and noticeably by fish size, for electrofishing
methods. Capture probabilities of small mammals can vary by species, sex, and age; they also can vary
due to social dominance and, especially for animals near the edge of the grid, home range size and the
number of traps in the home range.

17. Capture probabilities will vary by time, leaving us with an M,, type of model and making estimation
of N impossible by removal methods. Catch-effort methods could be used, but then the relative effort on
each occasion must be known and quantified and the analysis methods are different from those in Otis et
al. (1978) or in program CAPTURE (cf. Seber 1 973:296-353).

Chapter 5

1. No. Nested subgrids could not be constructed, nor would adequate data be obtained.

2. Not necessarily. Animals may not have home ranges that overlap the grid, which implies that W = 0,
but they may still come and go from the grid, thus violating geographic closure.

3. The number of ellipses that intersect or are contained in the grid.

4. The choice depends on animal density. If all traps are expected to be filled on each occasion, the
probability of capture may actually be lowered due to nonavailability of traps. However, all traps usually
are not filled, and therefore, one trap per station and a larger grid are preferred. Also, placing the traps at
half intervals and using the same size grid is preferable to placing two traps per station.

5. No. Subgrids consisting of halves or quarters are biased when a linear gradient in density exists across
the grid. Nested subgrids are robust to such a gradient; that is, they will produce an unbiased estimate of
the average density in the grid.

6. No. Nested subgrids cannot be constructed from one long line of traps.

7. The additional area included in the strip of width W around the grid enlarges the area A to which N
applies, so that D = N/A is reduced.

8. Density is expressed in terms of animals per unit area, whereas population size simply represents an
absolute number of animals.

9. The X matrix does not contain information about capture location. To estimate strip width, and hence
density, information concerning the movement of individual animals is obviously required.

Chapter 7

1. It may be logistically easier to use 100 traps for 8 nights. However, using 200 traps for 4 nights may
avoid a closure problem and result in increased capture probabilities. )

2. Assume that the home range of the animal is circular, and therefore, the radius is 56.4 m. The
formula s < (\/-5 W gives s < 80 m. For s < W/2, s should be 28 m. Spacing should be set somewhere
within this range, with the actual value depending on the size of the grid and the number of traps
available.

3. Model M,, results, and no estimator is available.

4. The probability of capture is likely to vary by occasion (an unwanted source of variation), because
one would not expect an animal to have the same capture probability during the day as during the night.



One could pool the morning and evening captures, if time variation is indicated, or analyze them
separately, if enough data are available. Checking traps twice daily is certainly preferable to checking
only once per day.

5. Closure will be assured.

6. The MODEL SELECTION procedure lacks power, that is, the ability to identify sources of variation
in capture probability, when the probabilities of capture are small. In this population, probabilities
generally average less than 0.10, and thus Model M, is selected by default because none of the tests reject
any of the hypotheses.

7. The capture probabilities on Tuesday night probably would differ from the remaining occasions,
resulting in the presence of time variation. Therefore, the study probably should be continued for at least
one more night past the planned termination, to avoid models with time variation. During the analysis, the
OCCASIONS= option could be used to eliminate the Tuesday data from model selection and estimation.

Chapter 8

1. a. Geographic closure will be violated. It may be difficult to obtain adequate sample size.
b. Survival rates and sampling rates may be the only parameters that can be estimated due to the
lack of geographic closure. ‘
c. Catch per unit effort (CPUE) methods, such as Dupont (1976), might be appropriate.
2. Yes. A closed model assumes S = 1.
3. Yes. More parameters must be estimated. (See Cormack 1979:241.)
4. a. Not necessarily, because the estimators §j and Nj have a high sampling correlation as they are
computed from the same data. '
b. cv(N,) = 59/422 = 0.14 or 14%.
c. 0.65 + 1.96 (0.04) or about 0.57 to 0.73 or 57% to 73%.
d. Yes, by definition.
5. Yes. At least a good approximation can be computed by taking a weighted average of the annual
survival rates; a complex iterative procedure is required due to the covariance structure among the
estimators. Alternatively, Jolly (1979) provides a model for constant survival rate.
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| APPENDIX C
GENERAL READING LIST

The material below presents some guidelines helpful to biologists in getting into the literature. Because
the levels of mathematics differ, we have coded the references, to help the reader. The codes are found to
the left of each reference, and the code meanings are as follows.

Code Meaning
C Conceptual or review paper
S  Specific methodology reported in paper
D Difficult mathematics (relatively)
L Little mathematics (relatively)
V  Various levels of mathematics
*

Good initial reading

References to many specific methods derived under the closure assumption are contained in Otis et al.
(1978). At this time, no major synthesis has been published for the open-population models; therefore, we
provide a number of state-of-the-art references for these models.

General Reviews

There is very little overlap of intent among the three references.

CV Cormack, R. M., 1968, The statistics of capture-recapture methods, Oceanogr. Mar. Biol. Annu.
Rev. 6, pp. 455-506. The first major synthesis and review of existing capture-recapture and removal
methods. Several related methods are covered briefly. A readable introduction and critique of the
literature that is still useful. Recommended reading.

CV* Cormack, R. M., 1979, Models for capture-recapture studies, in R. M. Cormack, G. P. Patil,and D.
S. Robson, eds., Statistical ecology, Vol. 5, Sampling biological populations, pp. 217-255,
International Co-operative Publishing House, Fairland, Maryland. A somewhat more technical
review of classes of models and approaches to capture-recapture problems. This is a different type
of review from Cormack’s 1968 paper, aimed at a slightly more sophisticated audience.
Recommended reading.

CV* Seber, G. A. F., 1982, Estimation of animal abundance and related parameters (2nd ed.,) Griffin,
London (in press). An in-depth summary of nearly all the literature on capture-recapture and
removal methods is found in Chapters 3, 4, 5, 6, and 7 of this edition. Examples of many of the
methods are given. Seber’s book is certainly recommended reading. ’

Estimation Methods for Closed Populations

SV* Otis, D. L., K. P. Burnham, G. C. White, and D. R. Anderson, 1978, Statistical inference from
capture data on closed animal populations, Wildl. Monogr. 62, 135 pp.



Estimation Methods for Open Populations

CL* Cormack, R. M., 1972, The logic of capture-recapture estimates, Biometrics 28(2), pp. 337-
343.

CL* Cormack, R. M., 1973, Commonsense estimates from capture-recapture studies, in M. S. Bartlett
and R. W. Hiorns, eds, The mathematical theory of the dynamics of biological populations,
Academic Press, London, pp. 225-234.

SD Jolly, G. M., 1965, Explicit estimates from capture-recapture data with both death and immigra-
tion—stochastic model, Biometrika 52(1/2), pp. 225-247.

SD Jolly, G. M., 1979, A unified approach to mark-recapture stochastic models, exemplified by a
constant survival rate model, in R. M. Cormack, G. P. Patil, and D. S. Robson, eds., Statistical
ecology, Vol. 5, Sampling biological populations, International Co-operative Publishing House,

Fairland, Maryland, pp. 277 and 282.

SL Manly, B. F. J., and M. J. Parr, 1968, A new method of estimating population size, survivorship, and
birth rate from capture-recapture data, Trans. Soc. Brit. Ent. 18, pp. 81-89.

SD Pollock, K. H., 1975, A K-sample tag-recapture model allowing for unequal survival and
catchability: Biometrika, 62(4), pp. 577-584. '

CV* Pollock, K. H., 1978, Building models of capture-recapture experiments. The Statistician 25(4), pp.
253-259.

General Computer Program Packages
SL Arnason, A. N., and L. Baniuk, 1978, POPAN-2: A data maintenance and analysis system for
mark-recapture data, Charles Babbage Res. Cent., St. Pierre, Manitoba, Canada, 269 pp.

SL White, G. C., K. P. Burnham, D. L. Otis, and D. R. Anderson, 1978, User’s manual for program
CAPTURE, Utah State University Press, 40 pp.

Related Reading

SV Brownie, C.; D. R. Anderson,k K. P. Burnham, and D. S. Robson, 1978, Statistical inference from
band recovery data, A handbook, U. S. Fish and Wildlife Service Resource Publication 131, 212 pp.

SV Paulik, G. J., and D. S. Robson, 1969, Statistical calculations for change-in-ratio estimators of
population parameters, J. Wildl. Manage. 33(1), pp. 1-27.

SL Robson, D. S., and D. G. Chapman, 1961, Catch curves and mortality rates, Trans. Am. Fish. Soc.

90, pp. 181-189.

SV Ricker, W. E., 1975, Computation and interpretation of biological statistics of fish populations, Can.

Fish. Mar. Serv. Bull. 191, 382 pp.
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CHAPTER 1
INTRODUCTION

Interest in estimating the size of populations has had a long history. The crudest methods date back at
least to the 17th century and probably long before that. Applied capture-recapture methods with some
theoretical basis began to appear in the 1930s and 1940s. The period since then has seen many
developments in methods for estimating population size under a wide variety of assumptions and
situations. Generally, modern methods can be classified into two groups: capture-recapture and removal
methods. ’

Just what is a capture-recapture study? We will describe a simple example before we discuss more
realistic cases (Chapter 3). Suppose that we wish to estimate the size N of a population in which there is
no birth, death, immigration, or emigration over the time period for which we plan to make the estimate.
On a first visit, we catch a sample of 1000 animals, mark them so that we can recognize individual
animals in the future, and return them to the population where the marked animals mix with unmarked
animals. We denote the number of animals in this first sample as n;; n; = 1000 in this example. On a
second visit, we catch 500 animals (call this n,), of which 450 are unmarked (call this u,) and 50 (n, — u,)
are marked. In this example, the proportion of the population that is marked, called the “capture
probability,” is denoted by p and its estimate by p. The estimate of p is p = (n, — u,)/n,, or 50/500 = 0.10.
Because the number of marked animals in the population is 1000, an estimate of the total population is N
= n,/p, or 1000/0.10 = 10 000 animals. To improve the precision of N, we can mark the 450 unmarked
individuals, return them to the population, and resample. On the third visit we catch more animals (call
this n,), of which some are marked and some are not. This procedure can be continued indefinitely as long
as the initial assumptions (no births, deaths, immigration, or emigration) hold. Full details of this and
other capture-recapture models are given in Chapter 3.

In a removal study, in contrast to the capture-recapture study described above, animals are captured
and removed from the population rather than being marked and released. On the second and subsequent
visits, more animals (u,, u,;, u, . ..) are captured and removed; continued sampling will catch
progressively fewer animals on each occasion until eventually none will remain to be captured. The
progressive decrease in the first few terms of the series u;, Uy, U;, ..., is used to estimate N, the total
number of animals. Alternatively, we can mark the captured animals and return them to the population.
In this way, they are “removed” from the unmarked population without our having to remove them
physically. This kind of removal allows us to view capture-recapture experiments as if they were removal
experiments; the advantages of this method will be explained later. Details of removal models are given in
Chapter 4.

Capture-recapture and removal sampling are useful methods in some situations. On the whole,
however, their usefulness is much overrated in the biological literature. In this primer we explain the
methods, the assumptions on which they are based, and their average performance.

We believe a summary of the literature on the state of the art will be helpful. Cormack (1968, 1979)
and Seber (1982) give detailed reviews. Appendix C, the General Reading List, provides an index to the
relevant sources. Typically, only special cases of models for capture-recapture and removal experiments
have appeared, and these have often involved -approximations and simplifications. With some important
exceptions, little emphasis has been placed on testing assumptions within or between existing methods.
Many methods presented in the literature are ad hoc (without a firm basis), and some are demonstrably
incorrect. Rarely have new methods been compared with older methods based on the same assumptions.



Richard Cormack

George Seber probably is best known to ecologists for his
work on several open-population models and the two editions of
his book, Estimation of Animal Abundance and Related Para-
meters. Of tremendous value to biologists and statisticians, his
book draws together in a cohesive treatment the literature that
had been scattered across various biologicél and statistical
disciplines. '

Seber became interested in capture-recapture models-less by
design than by accident, through his association with J. N.
Darroch. His primary interest has been in statistical theory. He
has found the quantitative aspects of ecology challenging and
interesting from both practical and theoretical standpoints. He
believes that mathematical models are important but that they
must have a sound biological basis. :

Seber took a B.Sc. degree and an M.Sc. degree in
mathematics at Auckland University, New Zealand, and a
Ph.D. degree from the University of Manchester, England. He
served as a statistician at the London School of Economics, as
professor of mathematics at Auckland University, and as
Director of the Biometrics Unit at Otago University, New
Zealand. He now is head of the Mathematics Department at
Auckland University. (Recent photograph.)

Richard Cormack has been interested in capture-recapture
theory, primarily open-population models, for the past 20 years.
He was born and raised in Scotland and educated in England.
He took his degrees at Cambridge intending to be a theoretical
astronomer, but after graduating he elected to work in the field
of mathematical statistics. He spent a year in the United States
at the University of Washington, with Douglas Chapman.
Cormack worked at the University of Aberdeen for 10 years
and at the University of Edinburgh for 6 years before going to
the University of Saint Andrews in eastern Scotland, where he
holds a chair in statistics.

A review paper in'1968 on capture-recapture methods invited
by the Annual Review -of Oceanography and Marine Biology
followed his paper in 1964 on the estimation of survival rates
from capture-resighting data. More recently, he has published a
series of papers relating primarily to open-population models.
He was closely involved with the work of A.N. Arnason and A.

~ D. Carothers while at Edinburgh. Cormack now is studying the

use of log-linear methods for the analysis of capture-recapture
data and feels this methodology is promising.

Statistical ecology remains his primary interest. He believes
that the fascination of statistics resides in its capacity to help
other scientists, and that this is best fulfilled by work with
others. (Recent photograph by Peter Adamson.)

George A. F. Seber



The results of computer simulations that compare methods or that examine the small-sample properties of
a given method have been published only recently, Most estimation methods appear to be very sensitive
to the breakdown of certain assumptions: they are not “robust.” Little admission has been made of the
fact that models developed under the closure assumptions are merely variations on the classic “ball and
urn” model (Feller 1950). An analogy between this model and real animal populations has not been
made, but few biologists seem to be aware of this lack. Finally, in the past decade or so, attention has
been focused on the traditional assumption that all members in a population are equally catchable on all
occasions. It is now recognized that this assumption rarely holds, and much work has been done in recent
years to build models that allow the assumption to be relaxed.

Closure: An Important Assumption

Closure means that the size of a population is constant over the period of investigation: no recruitment
(birth or immigration) or losses (death or emigration) occur. This is a strong assumption, and of course it
is never completely true in a biological population. For greater generality, we define closure to mean that
there are no unknown changes to the initial population. In practice, this means known losses (trap deaths,
or deliberate removals) do not violate our definition of closure. If the study is designed properly, closure
can be met, at least approximately.

Closure is a very important assumption because all previous capture-recapture and removal models are
extensions of ball and urn models (Feller 1950:45-47). We subdivide the closure concept into two
components:

(1) “geographic” closure by a boundary, analogous to the sides of an urn, that limits the population.

(2) “demographic” closure to birth, immigration, death, and emigration.

The distinction between geographic and demographic closure is important because open models
(mentioned in Chapter 8) are open only to demographic closure: geographic closure is still a critical
assumption. ‘

Unless geographic closure is met, the area relating to the parameter N is not defined and N itself has no
meaning. For example, geographic closure is met with fish in a small pond, mammals on a small island, or
squirrels in an isolated woodlot. Geographic closure is violated when capture-recapture is done with a
relatively small grid of traps in a very large field inhabited by small mammals. Similarly, geographic
closure probably will be violated when fish are sampled in a large reservoir, unless the whole reservoir can
be sampled properly. '

The subject of geographic closure arises because models for capture-recapture and removal data are
based on ball and urn studies, which assume a three-dimensional container (Figs. 1.1-1.3). In these
studies, the samples are drawn from the urn, and the objects are marked and returned to the urn, which is
shaken to mix the marked and unmarked objects randomly before the population is sampled again. The
concept of geographic closure comes about when models for populations in three-dimensional containers
are applied to two-dimensional areas. For example, a biologist may wish to sample a 2- by 3-km island to
estimate the size of the meadow vole population. He typically will position a series of traps on a grid or
lattice. Unless his grid is 2 by 3 km, he faces problems because he has not met the requirement for
geographic closure. This subject is discussed in detail in Chapter 5; see especially Figs. 5.1-5.3.

Sometimes the assumption of demographic closure can be relaxed. Seber (1973:70-71) showed that
natural mortality will not bias some estimators if it acts equally on marked and unmarked segments of the
population. In such instances, the population estimate relates only to the population size at the beginning
of the study. However, if both recruitment and mortality occur during the experiment and if both marked
and unmarked animals are affected similarly by mortality, the estimate of N will be too high, on the
average, for both initial and final population size (Robson and Regier 1968).

Finally, we remark that removal studies often invite failure of the closure assumption. The removal of
a significant number of animals may create a “vacuum,” and animals outside the ared may move into the



Fig. 1.1. The classic ball and urn experiment is the basis for
the ball and urn model (Model M,). Because balls neither die
nor give birth, nor do they immigrate or emigrate, the
demographic closure assumption is met. The sides of the glass
urn limit the population boundaries, and, therefore, ensure
geographic closure. N is well defined and here N = 30 balls.

Fig. 1.2. A population of 30 adult fish, of which 12 are
marked, in a glass container. Geographic closure is assured
because the glass bowl confines the population. The bowl also
prohibits immigration and emigration. If the length of a
capture-recapture study is short (say 4 days), death can be
assumed to be negligible; if it is not, dead fish will be noticed in
the container. Any reproduction can be ignored on the basis of
the small size of the young. Therefore, demographic closure is
valid.

Although the closure assumption is met, the simplistic
assumptions of Model M, are probably violated. Notice that
the larger fish tend to be more prone to capture and, thus, to
be marked. Therefore, we might expect Model M, to be
appropriate. (Models M, and M, are discussed in this chapter
and in Chapter 3.)

Fig. 1.3. A closed population of N = 31 individuals. The six
individuals below the line are not subject to capture; that is,
their capture probability p is zero. When such conditions exist,
N relates only to the catchable population, 25 in this example.
Very large fish in a lake, old and wary coyotes, and
mosquitoes distant from the nearest trap may be examples of
individuals that are essentially untrappable.



trapping area and become subject to capture. In addition, the use of baited traps may induce movement
of animals into the trapping area. If capture and marking methods induce mortality, demographic closure
is violated. All these examples deal with violation of the closure assumption.

Many models have been developed for “open” populations. The concepts are discussed briefly in
Chapter 8. Models for open populations are critically dependent on geographic closure for estimating
population size, but they allow mortality + emigration and birth + immigration rates to be estimated.

Data

In capture-recapture studies, the same individuals are in the population on each trapping occasion, j =
1, 2, ..., 1, because of the closure assumption. (In removal studies, some individuals are removed on each
sampling occasion.) Therefore, we can conceive of the individuals as being numbered from 1, 2, .. ., to
the last individual, N; thatis, i=1, 2, ..., N, The capture and recapture history of each animal on each
sampling occasion can be expressed conveniently in a simple table called the X matrix and denoted as
[X;]- Let

- -
Xll X12 X13 et Xlt
X21 X22 X23 tr X2t
X31 X32 X33 v X3t
[Xul = XMHII XMt+12 XMt“a s XMth
__XNI XN2 XN3 c XNt ]
1 if the i animal is caught on the j"occasion
where X, =
0 otherwise.

Note that the first subscript denotes the row, and the second subscript denotes the column: For example,
X4, represents the third row, first column. :

The X matrix contains only zeros and ones indicating “not captured” and “captured,” respectively.
Each column details the history by sampling occasion, j = 1, 2, .. ., t. The first M, ,, rows relate to the
capture and recapture history of each animal that was captured at least once during the study. The
remainder of the X matrix contains all zeros, because these animals were never captured. In real studies,
of course, one does not know how many remaining rows there should be.



The following is an example of an X matrix.

j=1 j=2 j=3 j=4=t
i "1 0 0 1]
i=2 |1 0 1 0
i 0o 1 0 0
i=4 |0 0 1 0
[X,l= i= 0 0 1 0
i= 0 0 1 1
i= 0 0 0 1
i= 0 0 0 0
i=9 Lo 0 0 0_

In this example, we see that animal 1 was captured on the first occasion and was recaptured on the fourth
occasion. Animal 2 also was captured on the first occasion but was recaptured only on the third occasion.
Animal 3 was captured on the second occasion and never was recaptured. Seven different animals were
captured (M, ; = 7) in this 4-day (t = 4) study. We can see that two animals were never captured (N —
M, =9-7= 2) because the two bottom rows, all zeros, indicate that these animals were never caught.
Thus it is clear that only a portion of the X matrix is “observed” during a capture-recapture experiment,
Of course, in a removal study there are no recaptures, so each row contains, at most, one nonzero entry.
The type of data we collect limits the parameters that we can estimate. In general, we can estimate
population size (N), survival (S), and capture or recapture probability (p or c) from a capture-recapture
study; however, S = 1 for a closed population. In removal studies, only N and p can be estimated. In
some studies, only data on marked animals, such as tag recoveries from dead animals, can be taken. In
these studies, S and p can be estimated, but N cannot (see Brownie et al. 1978). These restrictions reflect
inherent relations between the collected data and the parameters that can be estimated from them.

Parameters

If we assume population closure, only two parameters are of primary interest:

N = population size (a constant)
and

D = population density (animals per unit area).

Estimation of D is more difficult than estimation of N (see Chapter 5).

The capture probabilities are just as important as the N and D parameters, but are of less biological
interest. The nature and number of capture probabilities depend on the assumptions being postulated (the
model). For example, when we contrast capture-recapture studies with removal studies, we are interested
in the initial capture and recapture probabilities, defined as

p = capture probability, the probability of first capture for an animal,
and ;

¢ = recapture probability, the probability that a marked animal will be recaptured.

In “trap happy” populations, we have p < c, whereas in “trap shy” populations, we have p > ¢. When
there is no behavioral response to trapping, we have p = ¢. As detailed in Chapter 2,-we denote estimators
of these parameters by the symbol, " called a caret or a hat. Examples are N, D, p, and &.

Estimators of p and ¢ are important because of their close bond with N. In other words, if p or ¢ are
estimated poorly and thus show large bias, then N will be affected adversely.



Statistics

Statistics are entities computed from the data—for example, the X matrix in the context of these
sampling studies. Statistics that are used frequently in capture-recapture and removal are defined and
discussed below.

n; = the number of animals captured in the j®sample, j=1,2, ...t
n. = the total number of captures during the study. ,
u; = the number of new (unmarked) animals captured in the " sample, j =1, 2, ..., t. Note that u,

always equals n,.

f, = the capture frequencies = the number of individuals captured exactly j times in t days of trapping,
i=12,... t For example, f; = number of animals captured three times during the t days of
trapping. The term f is used for the number of individuals never captured; obviously, f, is not

. observable.

M,,, = the number of different individuals caught during the experiment. Recall that t is fixed for a

given experiment; this term is merely the number of nonzero rows in the X matrix.

M; = the number of marked animals in the population at the time of the j sample, j = 2, 3, .. o L

Note that M, = 0.

M. = sum of the M;, not including M, ,.

m; = the number of marked animals captured in the jt" sample, j = 2, .. ., t. Note that u; = n; — my
and that m; = 0.

m. = sum of the m;.

The dot notation indicates the summation.

The statistics n;, u;, f, M,, and m; may be computed directly from the X matrix; see Otis et al.

(1978:15) for additional details.

Fundamental Aséumptions

Every modern estimation method is based on a set of well-defined, explicit assumptions. There are
three general assumptions for all capture-recapture studies.

(1) The population is closed. (Open models allow this assumption to be relaxed, except that geographic
closure is still required.)

(2) Animals do not lose their marks during the experiment.

(3) All marks are noted and recorded correctly at each sampling occasion j.
There are two corresponding assumptions for all removal studies.

(1) The population is closed. (However, see remarks at the end of the Closure section in this chapter.)

(2) The number of unmarked animals is counted and recorded correctly at each sampling occasion j.

The crucial assumption for a model relates to the capture probabilities of the various population
members. The modeling of capture probabilities is the key problem in both capture-recapture and
removal studies. For example, the earliest assumption was that each animal has a constant and equal
probability of capture on each trapping occasion and that capture and marking do not affect subsequent
catchability of the animal. This assumption, related directly to the original ball and urn model (Model
M,), is unrealistic in capture studies of animal populations. It is now widely recognized that this
assumption usually is not met (Young et al. 1952, Geis 1955, Huber 1962, Swinebroad 1964). Edwards
and Eberhardt (1967), Nixon et al. (1967), and Carothers (1973a) provide clear evidence that accurate
population estimation usually requires models that provide for unequal probabilities of capture. The
effects of unequal capture probabilities on estimates derived from models that assume equal catchabilities
have been studied through computer simulation by Burnham and Overton (1969), Manly (1970), Gilbert
(1973), and Carothers (1973b). The estimators they studied generally were biased significantly when this
assumption was violated.



Capture-Recapture Models

Otis et al. (1978) have presented several methods that allow various relaxations of the assumption of
equal catchability. Much of this work started with the results of Burnham (1972) and Pollock (1974).
Following Pollock (1974), we consider a sequence of models (assumptions) allowing for three major
sources of variation in capture probabilities:

(1) Model M, assumes that capture probabilities vary by fime or trapping occasion.

(2) Model M, assumes that capture probabilities vary by behavioral responses to capture.

(3) Model M, assumes that capture probabilities vary by individual animal (h = heterogeneity among

animals).
The assumptions regarding unequal capture probabilities must be embodied explicitly in probability
models that describe capture studies. We agree with Carothers (1973b:146) that equal catchability is an
unattainable ideal in natural populations (¢f. Seber 1973:81-84). Therefore, we discuss the three simplest
ways to relax this assumption. ‘

Model M, allows capture probabilities to vary by time; that is, to differ on each trapping occasion. This
situation may be common even though the number of traps is fixed during the course of a study. For
example, a cold rainy period during the study might reduce the probability of capture during this time. If
the trapping effort were to vary, Model M, might be appropriate. Also, if different capture methods were
to be used on each occasion, this model could be appropriate.

Model M, allows capture probabilities to vary by behavioral response, or “capture history,” and deals
with situations in which animals become trap happy or trap shy. Carothers (1973a) referred to this
response as a “contagion of catchability.” This variation implies that an animal’s behavior tends to be
altered after its initial capture. For example, if an animal is frightened or hurt during initial capture and
marking, it probably will not enter a trap again.

Model M, allows capture probabilities to vary by individual animal. This situation has been modeled
only with great difficulty and requires that additional assumptions be made -about the statistical
distribution of the capture probability p. Individual heterogeneity of capture probability may arise in
many ways. Perhaps accessibility to traps (as influenced by individual home ranges), social dominance,
or differences in age or sex can cause such an unequal probability structure. This important type of
variation has been treated rigorously by Burnham (1972) and Burnham and Overton (1978, 1979); their
nonparametric approach is presented in Chapter 3.

In addition to Models M,, M,, and M,, we consider all possible combinations of these three types of
unequal capture probabilities; that is, Models M,,, M, M,,., and M,,;. We also treat Model M,, the
“null” case in which capture probability is constant with respect to all factors. Model M, corresponds to
the assumption of equal catchability. For simplicity, we denote estimators of population size for a specific
model by using the same subscript notation. For example, No denotes the estimator derived from Model
M,, N, denotes the estimator derived from Model M,, and N, denotes the estimator derived from Model
M.

Removal Models

Removal models are discussed in Otis et al. (1978:44-50). The simplest removal model we discuss here
was proposed by Moran (1951) and Zippin (1956, 1958). 1t is closely related to Model M, for
capture-recapture studies. We assume that effort is constant during the study and formulate a sequence of
removal models: Models Mg, My, Mg, .. .. In this primer, we do not discuss the models in which effort
is deliberately varied; however, a good review of such catch-effort methods can be found in Seber
(1973:296-347). ,

In removal studies, the collected data are the numbers of unmarked animals u; captured at each
sampling occasion j, j = 1, 2, . . ., t. After the animals are captured, they are “removed” from the



Kenneth P, Burnham

Kenneth Pollock has made major state-of-the-art contribu-
tions to the estimation theory for both open and closed
capture-recapture models. He was among the first:to delve into
the problems implicit in the assumption of equal catchability in
closed populations. Early in his graduate work, he focused on
model-building, estimation, and tests of assumptions for closed-
population models. His findings provided an important part of
the basis for the monograph by Otis et al. (1978). His recent
work has turned to open models, using the multiple hyper-
geometric approach. He has derived ML estimators for a series
of such models for both age-independent and age-dependent
populations.

Pollock was born in 1948 in Australia and received a B.S.
degree in agriculture from the University of Sydney. He took
M.S. and Ph.D. degrees from Cornell University working
primarily with D.S. Robson in the Biometrics Unit. Since
receiving a Ph.D. in- 1974 he has held several professional
positions including faculty appointments at the University of
Reading and University of California at Davis; he is now with
the Department of Experimental Statistics at North Carolina
State University. His interests include building realistic
statistical models and deriving statistical procedures that are
robust to model failure. (Recent photograph.)

Kenneth Burnham has made a number of important contribu-
tions to estimation and testing theory for closed animal popula-
tion models. He began his. education with a B.S. degree in
biology at Portland State College, and subsequently took M.S.
and Ph.D. degrees in mathematical statistics at Oregon State
University under W.'S. Overton. His M.S. degree, in the late
1960s, dealt with simulation studies of the robustness of existing
estimators of population size. He found that unequal probability
of capture (heterogeneity) caused serious bias in the existing
estimators. In his Ph.D. work he explored ML estimation for a
generalized model for heterogeneity. Having found that it had
unacceptable estimators of parameters, he. derived a very
nontraditional estimator based on the theory of the generalized
jackknife. While working in Alaska with C. Cushwa on a rabbit
population study, he developed a method to estimate density
from capture-recapture sampling. This method allows a pa-
rameter to account explicitly for “edge effect”—a problem that
has plagued biologists for several decades.

Burnham has worked as a statistician for the U.S. Fish and
Wildlife Service since 1973. He believes that more work is
needed on the tests of model assumptions, on model selection,
and on the derivation of robust estimators. He sees the role of
easy-to-use computer algorithms as becoming increasingly im-
portant and thinks that practical theory can be advanced as
biologists and statisticians work together more closely. (Early
1970s photograph.)

Kenneth H. Pollock
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Andrew Carothers has made contributions to the theory of
both open- and closed-population models. Born in Nairobi,
Kenya, he took a B.S. degree in Mathematics at the University
of Bristol, and, in 1969, an M.S. in Biometry at the University of
Reading after teaching for several years in East Africa. He spent
3 years working on capture-recapture theory at the University of
Edinburgh in association with R. M. Cormack, G. M. Jolly, and
A. N. Amason. His work focused on the testing of model
assumptions and the robustness of estimators, especially in
relation to the assumptions of equal catchability. Since 1972, he
has worked primarily on the applications of statistics in genetics.

Carothers feels that more emphasis should be given to the
power of tests in capture studies and to the relation between test
statistics and biased estimators, because he believes there are
cases where a model assumption is rejected by a significance test
even though the model is still quite useful. (Recent photograph.)

Andrew D. Carothers

population. Physical removal is the most common application; for example, the fish are transplanted to
another pond, or the animals are kept in a holding area until the study is completed. Another possibility is
to remove the animals by marking them in some manner; in this instance, the marked animals thus are
“removed” from the unmarked population of interest.

Model My, the first removal model, assumes that the capture probability is constant for all trapping

periods; that is, p, = p, = p; =. . . = P, (The R stands for removal.) Model My, allows the animals
caught on the first occasion to have a higher capture probability then than on all subsequent occasions;
that is, p, > p, = p; = . . . = p,- Model My, allows p, > p, >P; =p, = . . . = p, and so on. These

models are developed in detail in Chapters 3 and 4.

Program CAPTURE

Most of the computations necessary in the analysis methods presented here are nearly impossible to
perform without a computer. They include computations for estimators of parameters, sampling
variances and covariances, test statistics, and model selection. Our philosophy has been to let the
computer program CAPTURE do the arithmetic, leaving the biologist free to concentrate on the full



interpretation of results. The computer is far more accurate than a hand calculator, but it requires some
adjustments. For example, because most computer printers cannot print lower-case letters and subscripts,
the symbol n; appears on the computer output as N(J), and the estimators ¢ and p appear as C-HAT and
P-HAT, respectively.

Program input follows a simple, free-format style for easy use. A variety of options is available. We
advise users to enter the full X matrix to allow a very complete analysis. Alternatively, the user can enter
only certain summary statistics, for example, n;, n,, ..., n, and M, , for Model M,.

The documentation for program CAPTURE is found in White et al. (1978), available without cost
from the Utah Cooperative Wildlife Research Unit, Utah State University, Logan, UT 84322. An
abbreviated version is presented in Appendix A.

Questions and Exercises

1. Is Model M,,,, the most general model?

2. Can summary statistics, such as m;, u, M, M,,,, and m,, be computed from the X matrix?
3. Is Model M, generally useful for estimating N in biological populations?

4. Is the closure assumption relatively unimportant? Why? Why not?

5. Consider the following data (X matrix) from a capture-recapture study.

j=1 j=2 j=3 j=4 j=5 j=6  j=1
i=1 — 1 0 0 0 1 0 0
i=2 1 1 1 1 1 1 1
i= 1 0 1 0 0 0 0
i= 0 1 0 1 0 0 0
i= 0 1 0 0 0 1 0
i= 0 1 0 0 0 0 0
i= o 1 1 1 1 1 1

(a) What is t (the number of trapping occasions)?
(b) Whatis n;forj=1,2, ..., t?
(c) Whatis uy, forj=1,2?
(d) What is noticeable from the data on animals 2 and 7?
(e) Whatis M,,,?
(fy What is M,?
6. Does Model M, allow some animals to be trap happy and others in the same population to be trap
shy? '
7. Can survival rates be estimated under the closure assumption?
8. Assume a fishery biologist must determine the exact numbers of fish in a small pond. Wouid you
advise him to use capture-recapture sampling? Removal sampling? What?
9. Why must biologists be concerned about the capture probabilities?
10. Do you think that capture-recapture studies are easy to conduct, require only a few traps (say, 25 to
50), and are easy to analyze?
11. Why not always use a very general model that will not require concern about assumptions involving
the type and significance of various types of unequal catchability?
12. Consider the following X matrix from a capture-recapture study. Only the observed portion is shown;
animats that were never captured are not shown. Zero entries are left blank.

11
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i=1 [ 1 177
i=2 1 1 1
i=3 1

i=4 1 1
i=5 1 1 1
i=6 1

i=7 1

i=8 1

i=9 1 1
i=10 1 1
i =11 1

i =12 1

i=13 1

i =14 1

i=15 1 1
i =16 1

i=17 1
i =18 1
i=19 , 1
i =20 — 1 _]

(a) What is t?

(b) What is M,,,?

(c) What are n,, n,, and n,?

(d) Whatis n.?

(e) What are u,, u,, and u,?

(f) Whataref, f,, and f,?

(g) What are M, M,, M,, and M,?
(h) What is M.?

(i) What are m,, m,, and m,?

(i) What is m.?



This cotton rat has been captured in a wire mesh Japanese live
trap. (Photograph courtesy of Lynn Lefebvre.)

This Indiana bat (Myotis sodalis) has been tagged on the wing
with a celluloid ring. Bats tend to show fidelity to roost sites,
so that they can be mist-netted in the vicinity of the roost with
a good chance the closure assumption will be met. (Photo-
graph courtesy of Richard Clawson.)

This Richardson’s ground squirrel has been captured in a wire

live trap. (Photograph courtesy of Kathy A. Fagerstone.)

The equipment shown is commonly used in capture-recapture
studies. The data sheet is in a waterproof notebook, and a
pencil, ear tag, and ear tag pliers lie on top of the data sheet. A
spring scale lies beside the clipboard. Additional tags are in the
envelope. Other miscellaneous equipment and a live trap are in
the background. (Photograph courtesy of Kathy A.
Fagerstone.)
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CHAPTER 2
STATISTICAL CONCEPTS

Capture-recapture and removal studies often are not recognized as sampling methods because they are
quite unlike those used in much of the usual sampling theory (see standard texts such as Cochran 1977).
For example, in capture-recapture and removal studies the sampling probabilities are not known and
cannot be pre-cstablished. No sampling “frame” is available, and the investigator has relatively little
control over the situation.

Progress in science usually is made through experimentation—data are collected and analyzed, and
conclusions are drawn. The conclusions drawn from the sample data are meant to go beyond the
particular study. Biologists often wish to generalize from a particular experiment to the class of all similar
experiments. This type of generalization is termed “inductive inference.”

Let us examine two idealized case studies to illustrate some elementary concepts of sampling and
inductive inference. First, consider the task of a quality control specialist who must estimate the
proportion of newly manufactured light bulbs that are defective. Because 5 million bulbs are
manufactured each month, he cannot test each light bulb (make a complete census); therefore, he must
sample the bulbs and test the sample for defects. If he randomly samples 1000 bulbs from the population
of 5 million, tests them, and finds only 3 defective, he might conclude that about 0.3% of the bulbs
manufactured during his experiment are defective. That is, he makes an inference about the population
from a sample. :

Second, consider a biologist faced with estimating the number of mice on a large tract of land in
south-central Wyoming in June of a given year. Because total enumeration (a census) is impossible, he
might sample the area by establishing several 20 by 20 trapping grids located randomly throughout the
area. (He may, in fact, want to stratify the sample by vegetative type, but he will avoid such
considerations for the moment.) If he performs a capture study for six nights at each area, he can estimate
the density (the number per unit area) for each of the study areas. The density estimates could be
averaged over the areas, and inferences could be made about the density of the population, based on the
sample data collected from the grids.

Both of these samples involve sampling a defined population, acquisition of data from the sampling
process, and finally estimation and conclusions about the population rather than conclusions about only
the sample. A theorem of logic tells us that there is uncertainty in inductive inference and, therefore, that
we cannot make perfectly certain generalizations about a population by studying only a sample.
However, we can make uncertain inferences, and we can measure the degree of uncertainty if the
experiment has been performed in accordance with certain scientific principles (Mood et al. 1974). One
function of the science of statistics is to provide techniques for making inductive inferences and for
measuring their degree of uncertainty (Ostle 1963:1-16).

With respect to the subject of statistics, many think of statistics in terms of simple t and chi-square
tests, analysis of variance, regression, and other such methods. In fact, the field is far broader than is
suggested by the methods for data analysis to which people are exposed in the first two or three courses
on statistics. Statistics is not a branch of mathematics, but it is an area of science concerned with the
development of a practical theory of information. It involves sampling, design of experiments, analysis of
information, estimation of parameters, and testing of hypotheses. It is the basis for inductive inference,
and it is an integral part of what is termed the Scientific Method. The following sections introduce basic
statistical concepts that are needed for an understanding of the following chapters.



Theory, Reality, and Models

It is essential to understand the difference between theory or theoretical statistical models and reality.
The methods presented here and in Otis et al. (1978 ) are approximations or models of reality. No model
gives an exact explanation of a real biological or physical phenomenon. A “good” model, however, can be
very useful to our understanding of a process.

In this primer we aré concerned with the statistical theory of animal trapping experiments designed to
enable the estimation of population size or density, or both. We postulate theoretical probability models
for sampling animal populations, apply a theory of probability and inference based on rigorous
mathematical foundations (see Otis et al. 1978), and present several theoretical models for use in the
collection and analysis of information in real biological populations. The models are not exact
representations of nature. Their utility is measured by the extent to which they assist us in understanding
the dynamics of animal populations. :

For our purposes we think of a model as a mathematical representation of a postulated set of
assumptions concerning a capture-recapture or removal experiment. Such models are stochastic because
they allow for the fact that the data arise from a random process. In a stochastic process, the outcome
(data) is not completely predictable. Stochastic processes are common in everyday life, and they represent
the rule rather than the exception. (This topic will be discussed further later in this chapter.)

Although the biologist need not understand the details or derivation of stochastic models, he should be
able to see how these models help to achieve the goal of estimating population parameters. Their role is
illustrated in Fig. 2.1. The model is the link between the data and the procedure used to estimate the
population parameters contained in the model. Thus, whether or not the fact is stated explicitly, all
statistical estimation procedures are based on a model of the sampling experiment or, stated differently,

DATA
Collected from a
sampling study

MODEL
Represents a specific
set of assumptions

concerning the random
process being sampled

TESTS OF ASSUMPTIONS

ESTIMATION PROCEDURE

PARAMETER ESTIMATES

Fig. 2.1. The roles of data, models, and estimation procedures -
and their relationships in producing estimates of parameters.

15




16

estimation procedures are based on a specific set of assumptions concerning the sampling experiment. In
Chapter 3, we deal more directly with models of capture-recapture experiments and the assumptions they
represent.

Education in the biological sciences often has not included adequate explanation of either the scientific
method or the theory of inference. The books by Baker and Allen (1968) and Goldstein and Goldstein
(1978) provide an introduction to both subjects, and those by Popper (1962) and Medawar (1969)
present more technical discussions. The use of the scientific method represents a broad philosophy
concerning rigorous inference. We might ask, “What justifies a conclusion?” The answer to this question
always involves “valid methodology.”

Valid methodology is a package of essential ingredients: proper hypothesis formulation, design of data
collection, conduct of the experiment or sample, rigorous analysis of the data to test the hypothesis, and
inference (a conclusion) to reject or support, but never to “accept” the hypothesis. Inference depends
critically on study design and data analysis.

Estimation

In the discussion of models, we frequently referred to parameters and estimation procedures (or
estimators). These terms are discussed below. [See Kendall and Buckland (1970) for related material].

Parameter. A parameter is the true population value of interest, expressed as a number. In
capture-recapture studies the parameter of interest is either population size N, the total number of animals
in the population, or population density D, the number of animals per unit of area. Examples of other
important parameters in biological work are annual survival rate, average clutch size, average number of
corpora lutea, and the proportion of males in a population.

Estimator. An estimator is a mathematical expression that indicates how to calculate an estimate of
a parameter from the sample data. Estimators are necessary because we almost never know the value of
the population parameter. The following formula for calculating a mean is the estimator most commonly
used by biologists.

(2.1)
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This formula for the sample mean is an estimator of the population mean p. The Petersen-Lincoln
estimator of population size is simply

. nn,
N = s
m,

where n; and n, are the total number of animals captured on the first and second sampling occasions,
respectively, and m, is the number of marked animals captured on the second occasion (Seber 1973:59).
In general, an estimator is shown with a “hat” over the parameter to indicate clearly that it is an
estimator, rather than the true parameter. For example, N and D are estimators of the parameters N and
D. An estimate is the numerical value resulting from substituting the sample data into the estimator. For
example, the data set {4, 2, 7, 3, 4}, when substituted into the estimator given in Eq. (2.1), produces the
estimate 20 + 5 =4,

In most practical situations, a “proper” estimator is not obvious. In other words, intuition is often of
little help in deriving a good estimator of a parameter. Without a model, we can only guess at valid



Carl George Johannes Petersen

Nearly every terrestrial ecologist is aware of the Lincoln
Index, a simple estimator developed by Frederick Lincoln to
estimate the size of the waterfowl population in North America
from banding and recovery data. The same method was derived
before the turn of the century by C. G. J. Petersen for fishery
problems and as far back as the [7th century by P.S. LaPlace
for human population problems. In the past half century the
Petersen-Lincoln method has found many uses in a variety of
disciplines.

Frederick Lincoln, born in Denver, Colorado, in 1892, spent
his life in the study of birds. He joined the Biological Survey
(now the U.S. Fish and Wildlife Service) in 1920 and was
responsible for the bird banding program, a cooperative pro-
gram among Canada, the United States, and Mexico. He
developed the flyway concept for management of migratory
waterfowl and was the leading authority on the distribution and
migration of birds. He devoted much of his energy to developing
better methods of trapping and banding birds and to developing
procedures for recording, reporting, and analyzing banding
data. He was awarded an honorary Doctor of Science degree by
the University of Colorado in 1956. Additional information
concerning his life appears in Auk 79:494-499, written after his
death. (Photograph with permission of the American Or-
nithologists Union.)

The practice of estimating population size from capturing,

marking, and recapturing both marked and unmarked animals
had its beginning with the Petersen estimate. Carl George
Johannes Petersen was born in Denmark in 1860 and was a
famous fishery scientist and the director of the Danish
Biological Station from its founding in 1889 until his retirement
in 1926.
. The estimation method now bearing his name was published
in 1896 and stemmed from his work on plaice. He invented a
brass tag that he attached to the fish, to study their migrations.
When one-third of the marked fish in his study were recaptured
by fisherman, Petersen recognized that this information con-
stituted a basis for estimating population size.

Petersen was awarded the LL.D. degree honoris causa in
1912 from the University of St. Andrews, Scotland. Much
additional information about his work can be found in J. Du
Conseil 1928, 3(2):135-138 and in the Report of the Danish
Biological Station, 1940, Copenhagen.

Frederick C. Lincoln
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estimators. Such guesses are typically poor (if not incorrect), and no estimates of precision can be made
without a model. However, with a proper model relating the data, assumptions, and parameters of
interest, we can derive valid estimates of parameters in the model routinely, by very general, available
methods. The principal method used in statistical estimation over the past half century has been the
method of maximum likelihood (ML), which is discussed later in this section.

Our goal is to use good estimators to produce estimates of the parameters of interest. To evaluate
estimators, we need criteria by which to judge them. In statistical theory, two essential criteria arise from
the concepts of bias and precision. \

Accuracy. Accuracy is defined as “exact conformity to truth” or “freedom from error or defect.”
This ideal is unattainable in sampling studies and inductive inference; therefore, we rely on the concepts
of bias and precision (defined below) as aids in making good inductive inference.

Bias. Ideally, an estimator should be free of bias. That is, if we were to repeat a sampling experiment
under the same conditions on a very large number of occasions, each time computing an estimate from
the sample data, the average of the estimates should equal the parameter being estimated. Frequently, we
denote the “average” value of an estimator N by E(N) read as the ° expected” value of N or the
“average” value of N over a very large number or repetitions. Thus if E(N) = N, we say that the
estimator N is unbiased. Note that bias is a conceptual quantity because usually we have only one set of
data and can compute only one value of N from the data. Bias relates strictly ¢ the average performance
of an estimator.

It is often convenient to discuss the subject of bias or biased estimators in two classes—small-sample bias and
model bias. These terms are not well established in the literature, but the distinction between them is important for
biologists. Small-sample bias is often of negligible importance to a biologist in the analysis of one or only a few data
sets. This type of bias decreases as sample size increases. Biologists frequently encounter a “biased” estimator for
the first time when estimating the variance from a random sample. One learns that the ML estimator

variance= s?
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is biased. However, we find that the expression

variance = s

M.

T

(%, — %)

n—1

is unbiased. When n is 30 to 40 or more, the difference between s> and s2 becomes negligible. This is an example of
small-sample bias. Another example relates to the Petersen-Lincoln estimator.
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is biased, but

sz (0, + Dn, + 1) B
(m, + 1)

is unbiased in some instances and virtually unbiased in others (see Seber 1973:60 for details). However, the
difference between the two estimators is negligible if the sample size is reasonably large. For example, compare using
n, = 60, n, = 50, and m, = 30.

A much more serious problem deals with model bias. This problem arises when important assumptions such as
equal catchability, made in creating the model, are incorrect for a particular situation.' An incorrect assumption can
cause large bias even when sample sizes are quite large because it is theoretically independent of sample size. An
example will illustrate this important concept. Consider a theoretical population of animals in which individuals
become trap shy after they have been captured the first time. Given that the population is composed of 400 animals
(N = 400), the probability of first capture is 0.20 (p = 0.20), and the probability of recapture drops to 0.05 (¢ =
0.05), we can ask what bias could be expected if we (incorrectly) assume that the population is equally catchable
(that p = ¢) and estimate the population size under this assumption. Using simulation procedures, we find that the
expected value of the estimator E(N) is about 1071, which illustrates that model bias can be very substantial.
Formally, if E(N) = 1071, the bias is E(N) - N = 1071 - 400 = 671. Interested readers can find this example and
others in Otis et al. (1978:127). '

Expressing bias as a percentage is often useful; called “percent relative bias,” the expression is defined

as

E(N)-N
PRB:—-—N——X 100 .

In the example above, PRB = 168; that is, [(1071 — 400)/400] X 100 = 168.

Precision. Precision relates to the repeatability of a result. If, for example, a sample is drawn and the
total population size is estimated to be 10 700, will the next sample yield an estimate of 400, or 31 900, or
will it be near 10 700? Repeatability is an integral concept in science. The precision of an estimator is
measured by the sampling variance and its square root, called the standard error of the estimate (Fig.
2.2). People not familiar with the concept of repeatability, with numerical quantities plotted as histograms
(bar graphs), or with theoretical probability functions overlying the histograms should examine Fig. 2.3.

In this context, our concern is an estimate of the sampling variance of the estimator N, denoted var(N X
as a measure of precision or repeatability. The sampling variance and standard error [se(N) = var(N)]
- are measures of the variability of the individual estimates around their expected or average value over
different samples. Of course, we would prefer to have an estimation procedure that would give very
similar estimates from different samples.

The concepts of bias and precision are illustrated in Figs. 2.4 and 2.5. The information in Fig. 2.4,
adapted from Overton and Davis (1969), shows a series of targets and shot patterns. If we make an
analogy by considering each shot as an estimate (made from sample data by using a given estimator), we
can illustrate the concepts in terms of standard frequency diagrams as shown in Fig. 2.5.

Research scientists and managers always prefer the unbiased and precise estimator illustrated in Figs.
2.4a and 2.5a to the very precise, incorrect estimate depicted in Figs. 2.4¢ and 2.5¢, which is considered
especially undesirable. Unfortunately, situations like those depicted in Figs. 2.4b-d and 2.5b-d are
probably very common in attempts to estimate population size from the data for capture-recapture
studies. In this primer we attempt to improve the accuracy of such estimates by emphasizing study
design, increased sample size, and improved methods of analysis.
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Fig. 2.2. Histograms of two data sets with differing amounts of variability. In a, the data are clustered fairly closely around
the population parameter of 200. The spread of the data around the mean is measured by the standard error,which is 10 in
this example (variance = 102 = 100). For example, the range of the data is about 170 to 230 for 1000 data points. In
contrast, the data shown in b are much more variable, as reflected by the larger standard error of 25 (variance = 252
= 625). Here the range is from 130 to 280, also based on 1000 data points. In each instance, a normal curve has been fitted.

Stochastic Processes and Models. Processes that are not completely predictable (de-
terministic) are termed stochastic. Examples include coin-flipping, card games, all forms of gambling,
weather patterns, stock market fluctuations, and, most important in the context here, aill sampling data.

It follows that stochastic models are appropriate for data that arise from a stochastic process. Such is
the case in capture-recapture and removal-sampling studies. The biologist need not understand the details
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Fig. 2.3. Histograms of estimates based on samples of sizes 5, 20, 50, and 100, Computer simulation studies are useful in
assessing whether an estimator has a normal sampling distribution for a given sample size. In the case shown, the estimator
is distributed approximately normally as indicated in d.

of stochastic models, model building, or estimation theory to use the methodology'presented in this
primer; our purpose is to concentrate on concepts rather than on mathematical or statistical derivations.

Variation

Important variation is found everywhere in the biological sciences. It is crucial to understand clearly
the two distinctly different types of variation in capture-recapture and removal studies.

Spatial and Temporal Variation. First, there is the obvious variation in space and time in the
real world. Neither animal density nor plant cover is uniform over the State of Utah; both are clear
examples of spatial variation. Animal numbers fluctuate over time; these changes constitute temporal
variation. As another example consider a 20-km portion of stream divided equally into 20 numbered
segments. Assume that we know the exact number of fish in each segment. In other words, we know the
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Unbiased and precise
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Biased but precise Biased and not preecise .

Fig. 2.4. Targets and shot patterns illustrate the concepts of bias and precision. The goal of the marksman is shown in a.
Although ¢ might not be too bad for a marksman, who merely needs to adjust his sights, it is the worst case for the biologist
attempting to estimate population abundance. It is a highly precise, incorrect estimate. Furthermore, after completing a
shooting session, the marksman can approach the target and compare his shot pattern with the bull’s eye (true parameter).
In contrast, the biologist usually will never know the true parameters; therefore, his inductive inferences from the sample
data about the true parameter must be made carefully.

true parameters N;, N,, N;, ..., Ny, and these parameters vary. As a measure of this variation, the

population variance o* could be computed by the usual definition,
20

>, (N.-Ny

= e 2.2)

This quantity measures the variation in population size over space (20 segments of the stream). This type
of variation is most frequently studied in basic statistics courses, where ‘“sampling error” or
“measurement error’ is ignored. '

Stochastic Variation. Second, there is stochastic variation of basically unpredictable events such
as coin flipping, success of a nest, or time of death of an animal. This kind of variation is somewhat more
difficult to understand. We will use the same example of the 20-km stream and consider segment 3 of the
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Fig. 2.5. Anillustration of the concepts of bias and precision. Here, the information from a large number of samples is used
to compute individual values of N, which then are graphed as frequency distribution. (Alternatively, they could have been
shown as simple histograms.) We desire an estimator with properties shown in a, in which the average value of N is equal to
the parameter N and the variation of the estimates around N is small. Precision is measured by the sampling variance of the
estimator |var(N)| and relates directly to the spread of the frequency distribution. (Compare these spreads with those shown
in Figs. 2.4.a and b.) :

stream. In this instance, we have to estimate the number of fish in the 1-km segment. (Of course, a
complete census would give us the parameter N, directly, but we will assume that such a census is not
feasible.) A removal experiment using electrofishing methods on 3-5 occasions and analysis of  the
resulting sample data would provide an estimate N3 of the parameter N, If the survey were repeated, we
would get a second estimate N, of N, and so on. It is this variation among the estimates that we consider
in this primer, but it is important to recognize the existence of spatial and temporal variation.

Catching fish, however, is not a perfectly predictable event—it is, instead, a stochastic process.
Therefore, we obtain N, = N; + g, where ¢ is sampling error or measurement error. (Note, if N, is an
unbiased estimator, then the average or expected value of & must be zero.) Sampling variation occurs
whenever we sample from a defined population (N, in this instance) and attempt to estimate a parameter
associated with the population. We denote sample variation associated with the estimators N and p as
var(N) and var(p), respectively. Usually sampling variances themselves are only estimated, and we
employ the notation \"'ar(N) and Var(p) to signify that these are estimators.
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Standard Errors and Sample Size. The specific meaning and the concept of the terms

samphng variation” and “standard errors” are sometimes difficult to grasp. Expressions such as var(N)

or se(N) are recognized as measures of precision, but the underlying concepts often are not understood
clearly. The following example illustrates these concepts.

Consider a small island off the coast of Alaska with a population of colonial sea birds nesting on the
island’s rocky edges. There are exactly 11 000 nests on the island in a certain year, and in this species the
female lays only 1 egg. An investigator must find the proportion of the nests that are successful. In other
words, he wants to know the parameter p. We know that p in this example is 0.70, that exactly 70% of the
nests were successful; however, this fact is unknown to the investigator. He could contemplate a complete
census of all nests and, by classifying the nests as successful (p) or unsuccessful (1 — p), arrive at the
exact value of p. This approach is impossible, however, because the time and expense would be
prohibitive. Therefore, he must sample a fraction of the total nests and estimate the parameter using the
estimator p.

Let us assume that the investigator decides to randomly select a sample n of size 25 nests. If s is the
number of successful nests, then an estimator of p is computed as p = s/n. He conducts the survey, finds
the random 25 nests, and observes that 15 were successful and 10 failed. Thus the estimate of the
proportion of successful nests is 15/25 = 0.60. We know that p = 0.70 in this example, and that this
estimate of p is not too bad. The investigator, however, has no idea at this point how good his estimate is.
In other words, he does not know how close his estimate is to the true, unknown parameter.

The investigator then decides to run a second survey of 25 different nests to check his first estimate.
This survey yields s = 20 and an estimate of p = 20/25 = 0.80 or 80% successful. Now his confidence is
shaken a bit and he decides to conduct eight more surveys. The results, including the first two estimates,
are as follows: 0.60, 0.80, 0.69, 0.52, 0.88, 0.69, 0.76, 0.64, 0.56, and 0.76. All 10 values are estimates of
the same parameter p. The fact that the estimates vary represents sampling variation.

Sampling variation occurs when we sample a population (in this example, 11 000 nests) and estimate
the parameter p, rather than making a complete census and computing the parameter p exactly. It is clear,
once we consider the matter, that the variation in the 10 estimates would have been much smaller if a
larger sample had been taken (if n = 500 instead of 25) in each of the 10 surveys. Now we can ask, How
do I measure how much variation to expect in the estimates for a sample of a certain size? The answer to
this question is in the realm of mathematical statistics. Theory exists to enable calculation of the variance
of the estimate, var(p) in this example, which is a measure of the sampling variation we can expect. The
formula for estimating the variance of a proportion is given by var(p) = [p(1 — p)]/n. In the first sample
of 25 nests, p = 0.60; therefore, var(p) = (0.60)(0.40)/25 = 0.0096.

The square root of the variance, a more useful quantity, is called the “standard error. ” That is, se(p) =
\/var(p) or, in the above example, §e(p) = /0.0096 = 0.098. The standard error is used in calculating
confidence intervals and coefficients of variation. The estimated coefficient of variation (cv) of an estimate
is defined as

ev(d) = §e£9)

where 8 is, in general, an estimate of some parameter 9. In our example from above,

ev(p) = )
p
_ /- pIm
p
_ 0.098
0.60
=0.16 .



In biological studies, a coefficient of variation (of an estimator) of 0.10 or less is considered good, so we
see that the estimate from the first survey of 25 nests has only fair precision. The most effective means of
increasing the precision of our estimate is to increase the sample size.

A 95% confidence interval in our example is computed as p + 1.96se(p) or 0.60 + 1.96 X 0.098 = 0.60
£ 0.192; hence the interval is (0.41 to 0.79). If the investigator had run a large number of independent
surveys, each of a random sample of 25 nests, 95% of the confidence intervals would be expected to
include the true parameter (which, in our example, is 0.70). Clearly a confidence interval as wide as (0.41
to 0.79) is not of much use. The important concept here is that expressions like var(p), se(p), and cv(p) are
measures of precision (repeatability) or sampling variation.

A final point will illustrate the advantage and importance of sample size. Assume that the 10 surveys of nests
were pooled and the effort is considered as 1 survey, with a sample size of 250 (10 surveys X 25 nests per survey =
250). Then p = 0.69, which is very close to the true parameter of 0.70. The sampling variance is then Var(p) = [0.69
X (1 —0.69)]/250 = 0.000855, and $e(p) = 0.029. The coefficient of variation of the estimate is only 0.04. The 95%
confidence interval is much narrower (0.63 to 0.75), a good indication that the variation in the estimates of p would
not vary much from survey to survey. In other words, the repeatability is good, which allows much stronger
inference about the parameter of interest. Repeatability is an important part of inductive inference.

A Further Example of Variation. Now let us assume we have five islands, each similar to the others, and
each supporting a colony of birds of the same species. The situation is summarized as follows.

Island Unknown Sampling

Number Parameter® Estimate Variance
1 P4 91 =P g Yar(é1)
2 P2 ?2 =P € Yar(?z)
3 Ps ?3 =P; ¢ Yar(?a)
4 Pa 94 =P, + € Yar(PA)
5 Ps Ps = Ps £ € Var(ps)

*The proportion of successful nests.

If we average the five estimates, we see that both spatial and sampling variation are involved. For example, define p
as the average of the five estimates.

5 ~
S

5

p:

The variance of p is

o . 2.3)

It should be clear that the var(p) has two components of variation: sampling variation (given in Column 4 of the
table above) and spatial variation among the islands [similar to the expression in Eq. (2.1)]. Spatial variation enters
the computation of p because physical and biological factors may cause differences among the islands. The
separation of the sources of variation in expressions like Eq. (2.3) is a difficult subject known as “variance
components” in statistics. We will not explore the subject here because it would take us too far afield. In this
example, both spatial and sampling variation are likely to be quite important, and biologists should keep the two
sources in mind.

As a second example, consider the sunfish in all the small ponds {potholes) in a particular county in Minnesota.
There are 89 ponds, varying in size from 0.1 to 1.8 ha. Each pond is assigned an identification number, 1, 2, . . ., 89.
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Spatial variation arises because the actual population size N of sunfish will differ among the 89 small ponds. Some
may not have any sunfish (N = 0), whereas others may have large populations. We also might suspect that
population size could vary with pond size. Temporal variation relates to the actual population size N in a particular
pond as it changes over time, because of births and deaths. Temporal variation is often seasonal. Note that both
spatial and temporal variation relate to changes in N.

The stochastic component is encountered in many studies of animal populations because we usually cannot count
each member of a population to determine N. Instead, a sampling procedure, such as capture-recapture, must be
used to estimate N. The sample data (the X matrix or some summary of it) are used with an estimator, such as N=
(n;n,)/m,, to compute an estimate of the population size for a given point in time and space. The estimates vary with
each sample drawn (see Fig. 2.3). It is this variation that we call sampling variance; it is a measurement error,
caused by the stochastic nature of the sampling and capturing process and denoted as var(N). Sampling variation
can be illustrated by looking at pond 32. Because the pond is small, electrofishing was used to sample the population
of sunfish each day for 4 days. The fish were returned to the pond after each sample day. An appropriate estimator
was used to estimate N from the first 4-day sampling study, and the estimate was 243 sunfish. A second 4-day
sampling study was conducted, and the estimate was 202 sunfish. A total of five 4-day sampling studies yielded
estimates of the parameter N as 243, 202, 157, 231, and 192. This variation is called sampling variation.
Fortunately, it can be estimated without having to conduct replicate samples. Sampling variation is a measure of the
precision among the estimates.

Many practical problems necessarily involve both types of variation. However, this primer treats the estimation
problems for a given point in time and space, such as a single large trapping grid within a larger area, and thus
spatial and temporal variation are not relevant here.

Properties of a Good Estimator

Because estimators are functions of random variables (the sample), they possess probability (sampling)
distributions. Estimators, therefore, must be derived from probabilistic (for stochastic) models. A good estimator
(1) is robust to crucial assumptions: it is not very sensitive to the failure of some important assumptions. It is
robust to model bias.
(2) exhibits minimum variance: it is the most precise estimator possible. It makes full use of all the information in
the sample.
(3) is distributed normally: for the sample sizes usually encountered, the distribution of the estimator is normal. If
not normal, the distribution should be known, at least approximately.
(4) is unbiased, given the assumptions: at least the small-sample bias is zero when sample size is large.
All of these properties are more complex than we have indicated; however, those listed should provide a working
basis for an understanding of the material that follows. [The interested reader should consult a text on mathematical
statistics, such as Lindgren (1968:266-278).|
A word of caution is appropriate here because most capture-recapture and removal analysis methods fall
somewhat short of our expectations for a good estimator. For example, most estimators have a slight small-sample
bias, most are nonnormal (skewed to the right) for the sample sizes typically encountered, and most are not robust
to the failure of certain assumptions. Poor coverage of confidence intervals sometimes is due to nonnormality.
However, estimators are derived by using the ML method, which guarantees that they will be minimum variance
estimators, at least asymptotically. Many methods described in the literature are ad hoc methods, and their
properties are generally unknown. Such deficiencies call for careful design, field work, and analysis. These needs are
the central focus of the material to follow.

Estimation Methods

The data from capture-recapture or removal studies are collected from samples, thus requiring a
probabilistic treatment of the data to derive good estimation and inference procedures. As we have
shown, model formulation in this context begins with a set of explicit assumptions. A probability model



for the sampling distribution of the X matrix (the basic data) is derived to express the assumptions
quantitatively. A probability model is a form of mathematical representation of the observed data under a
specific set of assumptions and, as such, it provides a basis for quantitatively and explicitly incorporating
the specific assumptions about closure and capture probabilities and for developing the point and interval
estimators by rigorous statistical estimation techniques. Most parameter estimators used here were
derived by using the maximum likelihood (ML) method.

Estimators derived by this method are optimal, at least for large samples. This general method of
estimating parameters was derived in the early 1920s by the famous statistician and geneticist, Sir Ronald
A. Fisher, and it has been the backbone of statistical estimation theory for more than 50 years.
Alternative estimation procedures, such as method of moments and minimum chi-square, have been
developed, but the ML method is generally accepted as the best. The interested reader is referred to any
book on mathematical statistics for additional material on the ML method; one example is Kempthorne
and Folks (1971:242).

Random Sampling. Many authors state that random sampling is required in capture studies. This
assumption stems from ball and urn experiments (Fig. 1.1), in which marked and unmarked balls are shaken
completely, and a random sample is taken at the end of each sampling occasion.

Traditional sampling methods include procedures for drawing random samples. Use of the procedures requires
knowledge of the sampling probabilities (for finite populations). Deliberate control over the elements to be
sampled is required. However, such control is clearly absent in capture studies of animal populations. The sampled
animals are not selected by the investigator; the capture probabilities are not preset, nor are they even fixed during
the course of the study. It is unrealistic to think that an animal captured in one corner of the trapping grid may be
captured subsequently in the opposite corner. There is simply no basis for thinking that samples are drawn
randomly in capture studies of animal populations. Mendenhall et al. (1971:187) and Johnson and Kotz
(1977:248.:250) present a different view, although they recognize some practical problems. Feller (1950:45) gives an
example of the capture-recapture method for a hypothetical fish population (essentially the Petersen-Lincoln
estimate) and mentions in a footnote that the method is used widely in practice.

The concept of random sampling does not apply to situations assumed in Models M, M,, M,,, M,,, M, and
My, The goal of these models is to provide an analysis of the sampled data in the face of behavioral response and
heterogeneity, both of which are contrary to the traditional role of random sampling.

Robustness of an Estimator. In addition to the important properties of bias and precision, an
estimator also may be judged by its robustness to the failure of certain assumptions. In the previous
section, we described how every estimation procedure is based on a model that represents a specific set of
assumptions concerning the population or process being sampled. The concept of robustness relates to
the question, How well does the estimator perform if one (or more) of the assumptions on which it is
based is false? If the performance of an estimator is little affected by the failure of an assumption, it is
said to be robust to the particular assumption (also see Otis et al. 1978:15). As an example, recall the
discussion of model bias in the previous section, where we considered a capture-recapture experiment in
which the probability of first capture and recapture were 0.20 and 0.05, respectively. We found that if we
incorrectly assumed that probability of first capture and probability of recapture were equal, the
estimation procedure based on these assumptions was very biased and therefore performed poorly. Thus
the estimator is not robust to the assumption that the probability of recapture and first capture are equal.

Unfortunately, most methods for the analysis of capture-recapture data are not very robust. In particular, -

the assumption of equal catchability is important, because most traditional methods (the Petersen-Lincoln
and Schnabel estimators and the Zippin removal method) are not robust to failure of this assumption
(Burnham and Overton 1969; Otis et al. 1978:123-133).

Closed-Form Solutions to the ML Estimator. In general, ML estimators of unknown
parameters, such as N or D, are found by using calculus techniques on a function closely related to the
stochastic model and called the “likelihood function.” In many cases, the ML estimator can be written in
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Zoe Emily Schnabel

Calvin Zippin became interested in removal sampling while at
Johns Hopkins University in the early 1950s, when he began
consulting with a group in vertebrate ecology. The group was
involved in trapping rats in the Baltimore area to estimate
population size. The removal method was known, but . its
statistical properties, including the standard error formulas for
population size and capture probabilities, had not been
explored thoroughly. This consulting work developed into his
doctoral dissertation at Johns Hopkins.

Zippin joined the faculty of the University of California, San
Francisco, in 1953, and he has worked there since then
concentrating on biometry and the epidemiology of cancer. He
remains interested in capture-recapture and removal sampling.

Zippin, shown at the left, is standing with Sir Ronald A.
Fisher. Fisher, an outstanding pioneer in statistical theory and
practice, worked with several scientists involved in capture-
recapture studies. Some of his theoretical developments in
mathematical statistics form the basis for much of what we now
call the field of statistics. (The photograph was taken in the early
1950s in North Carolina.)

The Schnabel estimate” has been the backbone of popula-
tion size estimation, assuming closure, for the past 40 years. It
provides an easy-to-compute method for estimating population
size in the case where animals are captured, marked, and
recaptured over t occasions. Before Schnabel’s work, only t = 2
occasions could be handled by the Petersen-Lincoln method.

Zoe Emily Schnabel (Mrs. George S. Albert since the late
1930s) completed an A.B. degree at Oberlin Coliege and an M.
A. degree in mathematics at the University of Wisconsin (1937).
She taught mathematics and biometry at Ohio State University
and mathematics and statistics at the University of Tennessee
before retiring in 1969.

Schnabel’s work on capture-recapture studies, however, was
done between 1936 and 1938, when she was a graduate
assistant in the Computing Laboratory of the Mathematics
Department in Madison, Wisconsin. The Laboratory had been
established in the early 1930s to assist university researchers
with the statistical analysis of data. Members of the
mathematics faculty served as consultants, and Schnabel and
others assisted with the computations using calculating ma-
chines of the era.

The Schnabel estimate was an outgrowth of the work done by
Schnabel, E. Hull, and M. Ingraham in the Mathematics
Department and D. Juday, a limnologist in the Biology Depart-
ment. Schnabel concluded her paper with an observation that,
unfortunately, many have disregarded: “It should be
emphasized, however, that none of the solutions can be expected
to provide more than an estimate of the general order of
magnitude of the total population.” (Photograph taken about
1937-1938.)

Calvin Zippin



a simple form that is easy to use. For example, the Petersen-Lincoln estimator is the ML estimator of N
for a special case of one of the models discussed in Chapter 3. The formula is written as

0,

2

N:

m,

where n,, n, are the total number of animals captured on the first and second sampling occasions,
respectively, and m, is the number of marked animals captured on the second occasion. We say the

estimator “exists in closed form.”

Many closed-form estimators found in the published literature are only approximations to the exact
ML estimator; examples are the Schnabel (1938) and Zippin (1956 ) estimators.

Numerical Solutions to the ML Estimator. In capture-recapture models we rarely find that the
exact ML estimators exist as simple formulas (as shown above). To illustrate this, consider the model
developed by Darroch (1958) in which there are four sampling occasions and the capture probabilities

John N. Darroch

In many ways, John Darroch’s work represents a cornerstone
in capture-recapture theory. He studied optimal estimation in
the model underlying the Schnabel method for closed popula-
tions, laid the foundations for the fully stochastic open model
developed later and independently by George J olly and George
Seber, and developed the theory for stratified populations—a
subject that later captured the attention of Neil Arnason. Also,
he supervised the Ph.D. program for Seber at Manchester
University.

Dr. Darroch received his undergraduate and early graduate
training in mathematics and statistics at Cambridge. University
in England. He took a. lectureship in mathematical statistics at
the University of Cape Town, South Africa, in 1955. There, he
became interested in the problem of estimating the number of
species in a marine environment. This interest led to three papers
on capture-recapture, which were published in Biometrika and
were accepted as a Ph.D. thesis at the University of Cape Town.
He returned to England for 3 years before going to Australia in
the early 1960s. He is now at the Flinders University in South
Australia, (Photograph taken in late 1950s.)

29



30

are assumed to vary only by time. The approximate ML estimator for N for this model is the unique value
of N that satisfies

()LD

where M = M, = number of individuals caught during the study and t equals the number of sampling
occasions. For example, the total caught on each of four occasions might be n; = 30, n, = 15, n; = 22,
and n, = 45, and the total individual animals caught at least once, My, might be 79. Then, the ML
estimate of N is the solution of the equation

(3R

There are efficient numerical methods to solve such equations. However, simple trial and error and a little
patience will solve an equation as simple as this one. In general, the ML estimator for Darroch’s model is
derived by solving the equation

[--) -8 (-3)
N =1 N

For t greater than 2, this equation cannot be solved algebraically for N. In other words, it is not possible
to arrange the symbols algébraically in such a way that only N appears on one side of the equation and
all other terms appear on the other side. The equation can be solved, but only on an iterative basis, by
using a sophisticated trial and error numerical procedure. We say the equation does not have a simple,
closed-form solution. Complex probability models often do not have simple estimators; nonetheless,
complex models appear necessary to describe many capture-recapture studies adequately.

Although we cannot show simple closed-form estimators for most of the models to be discussed, it is
the ML concept that is important and we leave it to the computer to do the arithmetic. The numerical
methods employed are given in detailin Otis et al. (1978:103-114). The concept that is so important here
involves the notion of a likelihood function.

Likelihood Function. Formally, the likelihood function is the joint probability density functionof the sample
data. In the context here, it is a function of the integer-valued parameter N and the real-valued parameter p (the
vector containing all the probability parameters necessary to the model), given the discrete sample data contained in
the X matrix (a matrix of zeros and ones).



The notation is not as complex as it may seem. For example, L(N,p’g) denotes the likelihood function of the
unknown parameters N and p, given a specific set of sample data contained in the X matrix. As we will see in the
next‘chapt'er, this is notation for the likelihood function for Model M, (Fig. 2.6). Two more examples will be given.
For Model M,, we have capture probabilities that may vary among sampling occasions; that is, Py Py P3s v P If
we let these values be denoted as the vector p, then the likelihood function for Model M, can be denoted as
A(N,p| X) (Otis et al. 1978:106). In Model M, the parameter p is the probability of first capture, the parameter ¢
is the probability of recapture, and the likelihood function for Model M, is denoted as /{N,p,d X).

The likelihood function is a formal way to express quantitatively the relativeﬂ“likeliness” of several values that
may be considered as candidates for N. The ML method selects as the value for N the most likely one, on the basis

05

Likelihood
00

Fig. 2.6. A three-dimensional graph, showing the likelihood function for a given data set under Model M,. This model
involves only two unknown parameters: N = population size and p = constant capture probability. Given the data, the ML
estimates of N and p are found as those values that maximize the likelihood function. The idea is that we are trying to find
those values of N and p that make our data seem “most likely.” Graphically, we see that values of N = 208 and p = 0.136
are approximately the ML estimates in this example. Of course, with different data, the likelihood function would be of a
somewhat different shape and the values-of N and p that maximize the function also would be different.
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of the available data (hence the name, maximum likelihood). The use of likelihood theory and the ML method
extends our intuition and ability to make inductive inference. To understand these concepts, consider a 2-sample
capture experiment in which 40 animals are captured, marked, and released (n, = 40) in the first sample. In the
second sample, 50 animals are captured; of these 25 (half) have marks from the first occasion (1, = 50, m, = 25). '
Before computing the ML estimate from the Petersen-Lincoln estimator, let us use our intuition and see what can be
inferred from the data about population size. First, there must be at least 50 animals, because we caught that
number on the second sample. In fact, at least 65 animals must be present (40 from the first occasion plus the 25
unmarked from the second occasion). However it seems unlikely that N = 1000 because half the animals caught on
the second occasion were marked. Moreover, it seems fairly unlikely that the population could be as large as 500 or
even 400. For example, if N = 400, only 40/400 = 10% of the population would have been marked before the
second sample; if m, = 50 we would have expected only 5 marked animals in the second sample. Intuitively, we
have reason to believe that N is at least as large as 65 and probably well below 400. The ML estimate is the value
selected as the most likely, given the data we observed; N= (n;n,)/m,= 80.

The likelihood function is difficult to deal with directly because it involves products of often complicated terms.
The likelihood function for Model M, (see Chapter 3) is

LX) = P (L= PN

N!
(N - Mt+1)!

where n. is the total number of captures and recaptures. By taking the natural logarithm of the likelihood function,
we can deal with the sums of the terms; dealing with sums is nearly always more desirable than dealing with
products of terms (see Larson 1969:224-226). This function, denoted as fnL(N,p| X), is called “the log likelihood
function.” The log likelihood function for Model M, is

tn L(N,p| X)= ¢n [m] + (n)n(p) + (N — n.) £n(1 — p).

The term

n| —————
(N — M)

can be written more simply as
N

Z tn() .

j=N—M41+1

Details of likelihoods for some capture-recapture models are given in Otis et al. (1978:102-114).

Basis for Rigorous Inference

Often, capture-recapture data are analyzed, and conclusions are drawn from them by ad hoc
procedures. For example, M 4118 used frequently as an “index to abundance.” Another ihdex used
frequently is the number of animals captured per 100 trap nights. However, the use of indexes in science
is to be discouraged because indexes lack the basic factors (Fig. 2. 1) required for making inferences about
parameters based on data. Indexes are useful only when they have been calibrated with the parameter of
interest by using, for example, the theory of double sampling (Cochran 1977).

Initially, we must know what assumptions may be needed and which of them seem realistic. (See the
previous section on Theory and Reality.) These assumptions should be built into a stochastic model that
deliberately relates the sample data to the unknown parameters of interest. Then, a good estimation



procedure is required. This procedure (Fig. 2.1) is essential for making inferences from data. A final,
integral step is to test and evaluate the assumptions. This step is especially critical in capture-recapture
and removal studies because most estimators are not robust to certain assumptions about capture and
recapture probabilities. Tests of model assumptions are computed in program CAPTURE.

Confidence Intervals

An estimate without both a measure of precision (the sampling variance) and an assessment of the
relevant assumptlons is not trustworthy and must be regarded as scientifically invalid. A single estimate
of N is not meaningful without a measure of the sampling variation in the estimator. While the variance,
standard error, and coefficient of variation' are measures of sampling variation (or precision), the
construction of a confidence interval for the parameter of interest represents a much stronger inferential
statement. A confidence interval usually is written as

Pla<N<bl=1-0a,

where a and b are the lower and upper bounds calculated from the sample data, N is the parameter of
interest, and 1 — a is the significance level: The value of a is frequently chosen to be 0.05. The bounds for
the interval are constructed from a given formula, depending upon the distributional assumptions made
about the estimator. For example, confidence intervals for the mean p of a normal population are familiar
to. most biologists (see Bliss 1967:186-204). In this example, the bounds for the 95% confidence interval
are computed as

¥ + L.96sey) ,
where se is the standard error. The confidence interval statement implies that if one repeatedly drew a

random sample from the prulation, computed the estimate ¥ of y, and computed the 95% confidence
interval, then 95% of the intervals would cover the parameter p (Fig. 2.7).
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Fig. 2.7. Estimates and 95% confidence intervals plotted for 20 independent surveys. In each simulated case, the true
parameter is N = 200. Note that only 17 of the 20 (85%) intervals cover the parameter. The average valueof N appears to
be biased high. The bias, of course, could explain why the coverage may be a little below the nominal 95% level. In several
capture-recapture models, the actual coverage, unfortunately, is substantially less than 95%.
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Most methods in the statistical literature, and all methods in this primer, for constructing confidence
intervals are based on the assumption that estimators are distributed as normal random variables; it is
thus very desirable for an estimator to be distributed normally. Distribution-of ML estimators becomes
approximately normal as the sample size increases. Unfortunately, significant nonnormality (positive
skewness) often occurs with capture-recapture estimators, partly because sample sizes are too small (see
Otis et al. 1978:133-135).

Thus, in capture-recapture sampling it is often difficult to find a procedure to compute the lower and
upper bounds (not always symmetric around the estimate) of the confidence interval so that, in fact, they
include the parameter N 95% of the time. In other words, the actual coverage is often less than 95%. Poor
coverage also is often due to poor estimates of the sampling variances, to biased estimators, or to
nonnormal distribution of the estimators. (Refer to Otis et al. 1978:126 and 133-135 for examples and
discussion of these problems.) In this primer, 95% confidence intervals are constructed as N s 1.96

[se(N)].

Tests of Hypotheses

A statistical hypothesis is a statement about one or more parameters of the population of interest. A
decision concerning the validity of the hypothesis is made based on the value of a test statistic calculated
from the sample data. The test statistic frequently has a common distribution, such as chi-square, normal,
t, or F (see Mendenhall and Scheaffer 1973:325-365). Mathematical statistics is employed to derive the

1930s.
was far advanced for the time.

Empire not long before he died.

courtesy of P. M. Mwambu.)

C. H. N. Jackson

C. H. N. Jackson, D.Sc., made several theoretical contribu-
tions to the analysis of capture-recapture data in a series of
papers published during the 1930s and early 1940s. His work
stemmed from his life-long interest in tsetse flies in the
Tanganyika region (now Tanzania). Jackson, an Englishman,
consulted with R. A. Fisher on statistical questions during the

Jackson proposed several methods based on a variety of
assumptions. He gave point estimators and, usually, sampling
variance estimators for his methods. In most respects, his work

Jackson was born in 1900 and was awarded Ph.D. and D. Sc.
degrees from Cambridge University, the latter for his population
studies on tsetse flies. He was awarded the Order of the British

Capture-recapture studies were merely a small part of
Jackson’s long professional career; his publications cover the
period 1927-1955. He was a distinguished entomologist working
near Old Shinyanga with the Tsetse Research Center, now the
Uganda Trypanosomiasis Research Organization in Tororo,
Uganda. Those wishing to gain further insight into this famous
entomologist should read the paper by Potts and Jackson
(1952); “The Shinyanga game destruction experiment,” Bull.
Entomol. Res., 43(2);363-374. (Photograph shows Jackson
apparently at middle-age, perhaps in the 1930s or 1940s;



theoretical distribution of the test statistic if the null hypothesis (Hy) is true. From such distributions we
obtain critical values—numbers that are compared to the value of the test statistic to decide whether H,
is rejected. For every significance level (a value) there is a corresponding critical value. Usually « is set at
0.05 or 0.01. However, the experimentor is free to set the significance level of the test at any value,
although very rarely does this value exceed 0.10. Thus, in a sense, the user is specifying the chance that a
true null hypothesis will be rejected (Type I error). At this point, an interesting tradeoff is made. If the
user is willing to increase the chance of making a Type I error from, say, 0.04 to 0.10, then the
corresponding chance of accepting a null hypothesis that is not true (Type II error) is decreased. This
result of statistical testing theory explains why different significance levels may be used in different testing
situations. It is the responsibility of the experimentor to decide which type of error is the more serious in
a specific situation.

To test one hypothesis (specifically, the null hypothesis H,) against another (termed the alternative
hypothesis H,), a study is designed, data are collected and analyzed, and if the results are unlikely under
this hypothesis, the null hypothesis is rejected. If the results seem probable under the null hypothesis,
there is no reason to reject it. The test statistic measures the degree to which the results conform to the
null hypothesis.

For example, we might test the null hypothesis H,, stating that a penny is fair (that 50% of all tosses
will be heads and 50% tails), against the alternative hypothesis H,, stating that a penny is not fair, by
flipping the penny 500 times and observing the outcome. Intuitively, if we observed 50 heads in 500
tosses we would consider that the result was improbable under the null hypothesis and that H,, should be
rejected in favor of H, We would conclude that the penny is not fair. On the other hand, 248 heads
would be considered a likely result, very close to the 250 we would expect, and we would have no reason
to reject Ho. In this intuitive example, we have used the “number of heads obtained” as the value of our
test statistic.

When results are obvious, the decision to reject or not reject is clear. In actual practice, however,
experimental results are not always so clear and intuition may be of little help. Statistical theory then
provides objective methods for making inductive decisions and for evaluating the goodness of the
inferential procedures. Simply stated, the decision is whether to reject H,

A basic philosophy of science is that the truth of a null hypothesis cannot be proven. We can reject a
null hypothesis on the basis of data from a proper experiment. If the experiment is replicated several times
and each time Hy, is clearly rejected, the evidence becomes very convincing that H,, is false. Conversely,
if in repeated experiments, properly conducted, we fail to reject H,, we continue to entertain the
possibility that Hy, is true. We can never truly “accept” Hg, but repeated failure to reject it adds to its
authenticity.

Error Types and Distributions under the Null Hypothesis. In hypothesis testing, two types
of errors can be made.

® A Type I error is the rejection of a null hypothesis (H,,) that is true. The probability of a Type I error

is denoted as a (the significance level).

® A Type Il error is the acceptance of a null hypothesis (H,) that is false. The probabxhty of a Type II

error is denoted as B.
The possible outcomes of hypothesis testing are illustrated in Fig. 2.8. Commonly, 100a (in percent) is
referred to as the significance level of the test (for example, 5% and 1% are frequently used).

Nearly all of the relevant tests in Otis et al. (1978) and this primer are distributed as chi-square x )
variables if sample size is large. For these tests, H, is rejected if the test statistic is larger than the critical
value. Various chi-square distributions are shown in Fig. 2.9, with rejection (significance) regions. The
concept that a test statistic, such as chi-square test, has a distribution is difficult to understand. In many
cases, a test statistic follows a chi-square distribution if the null hypothesis Hy, is true. If such a test is
replicated 5, 25, 50, and 100 times, a strong tendency toward a chi-square distribution is observed (Fig.
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Decision Null Hypothesis Hg

True False
Reject Ho Type 1 Error (a) No Error
Do Not Reject Ho No Error Type 11 Error (B8)

Fig. 2.8. These are four possible outcomes of a statistical test of hypotheses and their associated errors.

2.10). Again, the concept of repeated samples is the basis for the theory that indicates distribution of a
particular test is chi-square under the null hypothesis.

The test of closure has a test statistic with a standard normal distribution (mean = 0, standard
deviation = 1). The test, shown in Fig. 2.11, is one-sided. Rejection of H,, (closure) is based only on
negative values of the test statistic (see Otis ef al. 1978:1 20). ;

The power of the test (in percent), defined as (1 - $)100, relates to the ability of the test to reject Hg if
it is false. If a test routinely fails to reject a false hypothesis, we say it lacks power. The power of a test
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Fig. 2.9. The chi-square distribution for 1, 3, 10, and 25 degrees of freedom (df). In each case, the 0.05 rejection region is
shown as a shaded area. All seven test statistics in Otis et al. (1978:115-119) are distributed as chi-square under the null
hypothesis H,. The interpretation of a test statistic that is distributed as chi-square is simple. Suppose that a test statistic for
a particular H, is distributed as chi-square with 25 df [written as %2,,5]. If the computed value of the test statistic exceeds
about 35.5, we will reject H, (at the 0.05 significance level). The concept is that a value as large as 35.5 is very unlikely if the
test statistic is, in fact, distributed as x2,5). We consider it sufficiently unlikely, so we decide to reject Hy. The output from
program CAPTURE in Otis et al. (1 978:92) gives various test statistics that are distributed as chi-square.
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Fig. 2.10. Histograms of test statistics based on 5, 20, 50, and 100 sample data sets. The test statistics are distributed as
chi-square under the null hypothesis. In d, the observed value of the test statistic at 12-13 represents a Type I error.

can be computed based on the theory of statistics. For now, only the concept of power is important (Figs.
2.12 and 2.13).

Error Types and Distributions under the Alternative Hypothesis. We have discussed and illustrated
the concept of the test statistic distribution under a null hypothesis H, and how this distribution actually determines
the test statistic values that cause rejection of Hy, for a given significance level (o) of Type I error. A test statistic
also has a distribution under the alternative hypothesis H,. The shape of this distribution determines the power of
the test or, equivalently, the size of the Type II error. Figs. 2.12 and 2.13 illustrate this concept.

Hypothesis Testing in Capture-Recapture and Removal Studies. In capture-recapture
and removal studies we encounter two basic hypothesis-testing situations. To illustrate them, let us
suppose that we are considering two models of a capture-recapture study, Model M, and Model M,. The
first test is for “goodness of fit.” An example of this test is

Hy: Model M, fits the data

H,: Model M, does not fit the data.

The question asked here is whether Model M, is an adequate representation of the data.
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Fig. 2.11. Test statistics frequently are distributed as a standard normal distribution with a mean of O and a standard
deviation of 1. Such a standard normal distribution is shown, with a one-tailed rejection region for & = 0.05 (shaded). The
closure test (Otis et al. 1978:120-121) has this distribution and a one-sided (negative) rejection region. If the test statistic
under H,, (closure) is less than —1.64, H, is rejected at the o = 0.05 level.

The second test might be termed a “‘simple alternative” test. An example of this test is

Hy: M, fits the data as well as M,

H,: M, fits significantly better than M,,

In the simple alternative tests discussed in this primer, the model under H, is more general than the model
under H,, This test is a comparison of the two models. Thus, the question asked here is, Does the more
general model (Model M,) fit the data significantly better than the simpler model (Model M,), or does the
simpler model do as well?

The fundamental difference between these two tests is that the first is concerned with the question of
whether one specific model provides a good fit to the data, whereas the second compares a specific model
to a more general model to see which provides the better fit to the data. Begon (1979:55 -75) presents a
section on testing assumptions in capture-recapture models that is easy to understand.

Capture-recapture and removal studies represent not only very difficult testing problems, but also difficult
modeling and estimation problems. The many technical reasons for these difficulties are beyond the scope of this
primer. We will, however, mention four causes of testing problems.

(1) With small samples, the distribution of a test statistic may not follow the theoretical (large-sample)
distribution very well (*Fig. 2.14).

(2) The test may have poor power and thus may make rejecting the null hypothesis difficult when, in fact, Ho is
false (*Fig. 2.15).
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Fig. 2.12. An example of the distribution of a test statistic under the null hypothesis H,, and under the alternative hypothesis
H,. The probability of a Typel error, denoted as o, is black; the probability of a Type Il error, denoted as B, is
crosshatched. In this example, a = 0.05 and p = 0.45; the power of the test of the null hypothesis is 1 — B and is considered
to be fairly poor in this example.

(3) The battery of tests to be described (see Otis et al. 1978:115-120) are very dependent on each other.
Dependence, which is to be expected because all the tests are computed with roughly the same data, makes
interpretation difficult. (The difficulty is alleviated, in part, by thc automatic model selection algorithm in
CAPTURE.))

(4) Certain tests cannot be computed unless substantial amounts of data are available for analysis; Leslie’s
(1958) test is an example.

In dealing with capture-recapture and removal methods, the user of this primer need not be concerned
with the derivation of the test or how the test statistic is distributed. Program CAPTURE computes the
value of the required test statistics and the observed significance levels. Biologists, therefore, need only to
interpret the results.

Simulation Methods

Since the late 1960s, computer simulation has been used to study the performance of various
estimators of population size from capture studies. Simulated populations provide a set of essential
features: (1) the primary parameter N is known exactly; (2) the capture probabilities are known and can
be manipulated at the will of the investigator; (3) the assumptions can be deliberately met or violated; (4)
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Patrick Leslie, “George” to many friends and colleagues, is
probably best known (in the context of the subject here) for his
work in estimating population size and death rates in popula-
tions of small mammals. During the late 1940s and early 1950s
he collaborated on a series of papers about voles with Dennis
and Helen Chitty while working in the Bureau of Animal
Population with Charles Elton. Before this work, he had
developed several regression-based methods. His most impor-
tant work dealt with the population projection matrix meth-
ods—the “Leslie matrix.”

Leslie took his undergraduate training in physiology in 1921
and earned the Doctor of Science degree at Oxford. He joined
the Bureau of Animal Population Research at Oxford in 1935
and continued there as Senior Research Officer until his
retirement in 1967. Incredibly, in view of his accomplishments,
Leslie had no formal training in advanced mathematics; his
talent for applying mathematical approaches to ecological
problems did not become apparent until after he was 35 years
old. Leslie’s career is reminiscent of that of Sir Ronald Fisher, in
that they both maintained contact with the real problems of
colleagues in other fields and loved to explore real data. Further
information can be found in Nature 239(5373):477-478, in an
article written after his death. (Photograph taken in 1949 by D.
A. Kempson, Bureau of Animal Population, Oxford University.)

Patrick H. Leslie

the proper stochastic sampling variation can be emulated; and (5) the simulated study can be repeated
exactly, if necessary (Bishop and Sheppard 1973).

Simulated populations are very useful in answering a host of questions concerning the small-sample
properties of an estimator under data from its model (bias), or under other models (robustness); the
confidence interval coverage; the power of hypothesis tests; and other important issues. Simulated
population data are inexpensive to generate and useful for many purposes. For example, Tables 17-19 of
Otis et al (1978:60-62) involve the analyses of 2400 simulated data sets.

We use simulation to generate a data matrix X with known properties. Let us start by considering the
first animal on the first trapping occasion. How can we determine if it is to be captured or not? We begin
by looking at the capture probability (a parameter) for this animal. Let us say that this is 0.3; that is,p =
0.3. Of course, an animal is either captured or not—it cannot be 0.3 caught. In addition, the data must be
simulated to preserve the chance (or stochastic) element in sampling studies. Therefore a uniform random
number between 0 and 1 is generated by the computer. This number is. compared to 0.3. If the random’
number is less than 0.3, the animal is “captured” and the first element of the X matrix is set to one,
indicating the animal was captured. The sample procedure is performed for animal 2, and so on. Input
values for the capture probabilities p;; are available within the computer. For example, if animals are
assumed to be trap happy, then animal 1 will have p > 0.3 on subsequent trapping occasions.
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Fig. 2.13. A second example of the distribution of a test statistic under the nuil hypothesis H,, and the alternative hypothesis
H,. The probability () of 2 Type I error is. shown in black; the probability (B) of a Type II error is essentially zero. The
power of the test 1 — B is nearly 1, indicating a very good and powerful test of H,,. (Compare with Fig. 2.12.)

Summary

1. Sampling a population enables valid inferences to be made about various parameters if proper
procedures are used in the field and during the analysis.

2. A mathematical model is required to link the sample data with the necessary assumptions and to
provide a basis for parameter estimation. Stochastic models are needed because the sample data result
from processes with a strong random component.

3. Estimators for capture-recapture and removal studies should be unbiased and precise. Proper
consideration of basic principles enables estimators to have these properties. Estimates of population
parameters must have a measure of precision to be of value in making valid inductive inference.

4. Variation is everywhere in capture-recapture and removal experiments. The two types of variation
(spatial and temporal, and stochastic) must be recognized in biological work.

5. Adequate sample size and the magnitude of the capture probabilities are critical elements to consider
in the design of a study.

6. Random sampling is inappropriate to most capture-type studies, and the methods discussed here make
no use of this assumption.

7. Only the estimator for Model M, can be computed easily by hand. The comprehensive computer
program CAPTURE is required for essentially all of the analyses described here.

8. Tests of hypothesis are important to assess the tentative assumptions and to select the best model.
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*Fig. 2.14. The fact that a test statistic may not follow the theoretical distribution if sample size is small can present
problems. Shown here is the distribution of a test statistic that asymptotically follows a chi-square distribution with 14 df
(solid line). However, with the sample sizes encountered in this series of experiments, the distribution was approximated
poorly by the chi-square distribution. The rejection region for a = 0.05 for the chi-square distribution is shown in the
crosshatched area. Note, however, that the critical value 23.7 defines a significance level on the actual sample distribution
that is much larger than 0.05. Because the sample distribution is not well approximated by the chi-square distribution, we
would reject the null hypothesis in this example when it is, in fact, true more often than 5% of the time (because more than
0.05 of the area of the actual distribution is to the right of 23.7).

Questions and Exercises

Are simple formulas available that enable biologists to compute ML estimates of N for most models?

Why is a model needed to estimate parameters from data?

3. If an ad hoc method provides N in ciose agreement with an estimate from a method with a rigorous
underlying theoretical basis, does this agreement provide substantial support for the ad hoc method?

4. What might be a reasonable coefficient of variation for N for research studies? For manage-
ment-oriented studies? .

5. Compute the average, say N, its standard error 8e(N), and its coefficient of variation (cv) for each

study below. If N = 20, which estimate is precise, which is biased, and which Is both precise and

biased or neither? (See Figs. 2.4 and 2.5.)

N =

Study1 20 21 17 19 22
Study2 25 26 22 24 27
Study 3 5 8 24 30 33
Study4 25 38 46 50 57
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*Fig. 2.15. Distribution of a test statistic with very poor power (power =1 — f8). The very large B region, which is the
probability of accepting H,, given H, is true, is shown in the crosshatched area.

6. Consider T, and T,, two test statistics of a specific hypothesis; T, has power 0.13 and T, has power
0.89. Which would you prefer?

. Name some statistical distributions that test statistics commonly follow, if sample size is large.

. What are the null and alternative hypotheses for a goodness of fit test?

. What are the two ways in which a hypothesis test can fail to give the “correct” result?

. Based on a large sample, you compute an estimate of a parameter o, as & = 141, with Se(8) = 13.1.

a. What is the 95% confidence interval?
b. Is a true value of 8 = 95 areasonable value?
c. Similarly, is ® = 135 plausible?

11. The answers to 10b and 10c were somewhat intuitive.
a. Can formal hypotheses be formed for 10b and 10¢?
b. What is the form of the test?

c. Compute and interpret the test statistics.

12. A colleague shows you an estimate of population size for snails in geographic areas A and B. In area
A, N = 4306, and in area B, N = 3911. What can be inferred from these estimates?

13. You work for an agency and your supervisor tells you of the agency’s concern for the Wabo tributary
of the huge Lake Powell. The concern is over the possible reduction in the number of spawning lake
bass in this area caused by oil drilling and exploration in this area of the lake. You are told to “find two
technicians and get out there and find out what we need to know.” The following questions should
occur to you. How would you answer them?

a. What is the population of interest?
b. Is a sample or a census called for?
c. What is the parameter of interest?

O W oo~
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14.

15.

16.

17.

18.

19.

20.

21.
22.

d. What sampling methods might be useful if a sample is required?

e. Suppose a good estimate of population size before exploration and drilling is available. Formulate
a formal null and alternative hypothesis of interest.

You see in the literature that a certain parameter estimator had a 95% confidence interval of (31 to 91)

for a given sample. Does the true parameter lie within this specific interval with probability 0.95?

Why? ‘

If you tested a null hypothesis and made a Type | error, what would you conclude? |s your conclusion

correct?

Consider the results of a 5-year study of mice in an old field in Wisconsin. Grid trapping was done with

live traps for 7 days and the data for each year were analyzed carefully. The estimates of population

size (N) appear below, along with the true parameters (N).

Year N (+se) N
1 115 (£15) 100
2 170 (+30) 150
3 150 (+£33) 200
4 256 (+40) 225
5 42 (+8) 50

a. What is the cv for each estimate?

b. Are the individual estimates fairly good?

c. Can good inferences be made from the five estimates about the actual population changes over
the 5 years?

Why have exact ML estimators for many of the capture-recapture and removal models not appeared

in the literature until recently?

s it necessary to know the details concerning likelihood functions and estimation theory before using

some of the analysis methods presented here and in Otis et al. (1978)?

Give two or three reasons why a stated 95% confidence interval may cover the true parameter less

than 95% of the time.

You have defined a null hypothesis, collected appropriate data, computed a proper test statistic, and

found the observed significance level is 0.007. What can you conclude? Why?

iIf var(N) = 625, what is se(N)?
Examine Table N.3.6 in Otis et al. (1978:127). Is the estimator for Model M, robust to trap-happy and

trap-shy populations?



CHAPTER 3
CAPTURE-RECAPTURE

MODELS

In the typical capture-recapture study, a main objective is to estimate population size N. Neither the
true value of N nor the correct assumptions to make about capture probabilities are known. The scientific
problem is, first, to formulate a model, or a series of models, and to select the most appropriate model
based on the actual data, then, given the model, to compute the most efficient estimate of N and the
reliability of that estimate.

Common practice has been to compute a few summary statistics from the entire X matrix of captures,
then to compute an estimate of N based on these summary statistics, using one of dozens of published
estimators, and to stop there without giving real justification for the selection of the estimator used. The
assumptions are not tested and the sampling variance of N is not estimated. This is not an objective,
scientific procedure. Because there are numerous published estimators, different persons can get quite
different estimates with the same data.

Table 3.1 presents common summary statistics for a 10-occasion, simulated capture-recapture study.
From just these summary statistics, we computed nine estimates of population size: 175, 183, 187, 197,
200, 202, 234, 245, and 260. Each of these numbers derives from a different published estimator of

. TABLE 3.1. Some common summary statistics from a simulated 10-
occasion (10-day) capture-recapture study. The number of captures
each day is n;. The number of unmarked animals caught on day j is u,.
The number of marked animals in the population just before the j*
capture occasion is M,. At the end of the study, the number of animals
captured exactly j times is f. Based on just these summary statistics,
more than a dozen different estimators of population size can be
computed. We computed, from this one set of data, some of the more
common ones plus the estimators we are recommending; the range of
values for N was 175 to 260.

Capture Animals Newly Total Capture
Occasion Caught Caught Caught Frequencies
j n, u; M, f,

38 38 0 26
45 34 38 43
57 27 72 : 39
56 23 99 28
65 17 122 26
72 11 139 13
59 15 150 4
62 5 165 1
64 6 170 0
67 4 176 0

—
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population size for capture-recapture data for closed populations. Still other estimates could be computed
from the data in Table 3.1 or from alternative summaries of the basic data. It is quite possible that a real
study producing these data, if published by different people, could have an estimate ranging from 175 to
260, with no measure of the estimate’s validity or precision. Yet, in this study, there are ample data to
allow an objective assessment of the assumptions underlying any reasonable estimator and, thereby, to
choose an appropriate estimator and to give its reliability.
Given a set of capture-recapture data, several questions need to be answered. What are the plausible
sources of variation in capture probabilities? Hence, what is a plausible model? What is a good estimator
of N? Is there a good estimator, based on the data in hand? Given an estimator, what is its reliability?
Without such a rigorous framework for the analysis of capture-recapture data, estimates of N are not
defensible. We present here the methodology for such an approach (cf. Nichols et al. 1981; Pollock
1981b). :
This chapter provides the basic information on the eight models underlying our suggested methods of
estimating population size from capture-recapture data under the assumption of population closure.
Central to this chapter are the assumptions of the models, the tests of the assumptions, the estimators
based on the models, and confidence interval construction. Tests of assumptions are either tests between
models or goodness of fit tests applicable to individual models. Based on these tests there is.an objective
rule for the selection of the “best” model to describe any given set of capture data. Five of the eight
models have a corresponding “good” estimator of N. :
In this chapter, as elsewhere in this book, the emphasis is primarily on concepts mathematlcal details
are given in Otis et al. (1978). Each example in this chapter is based on simulated data that fit one of the
eight models exactly. To prepare the examples, 10 simulated data sets were generated for each model. The
replications represented by these 10 cases for each model are used to illustrate the naturally occurring
sampling variations to be expected in estimates of population size. The reader should fully comprehend
the material in Chapter 3 before going to Chapter 6, which presents examples using real data.
The typical literature on capture-recapture methods with closed models concentrates on estimating
population size N. However, there are three critical considerations in constructing capture-type models.
e What does population size N mean? Because no capture model has anything analogous to the sides
of the urn in ball'and urn models, consideration often must be given to converting N to a density of
animals per unit area, N/A, where A represents the size of the area being used by the population.
Thus, one must ask, to what area does N relate? We discuss this problem (for closed models) in
Chapter 5. ‘

@ Should the model be demographically open or closed? Some comments on this problem are in
Chapter 8. o

e How can the parameters of the model vary over the three factors time, behavior, and heterogeneity?
We are dealing only with closed models in this chapter (and in most of thisv primer); consequently,
the only parameters of the capture model are the capture probabilities and the unknown population
size N.

Modeling Capture Probabilities

Development of the early capture models was motivated by thoughts of ball and urn studies. Imagine
an urn filled with 100 small white balls. One reaches in and removes, say, 30 (= n,) balls, marks them by
coloring them black, and returns them all to the urn. Thus, there are n, = M, marked balls in the urn when
the second sample is taken. (In our notation the number of marked balls, or animals, just before the jt
capture sample is M;. Given 100% survival of marked animals, M is the total number of animals marked
and released before the j™ sample is taken.) The 100 balls in the urn are mixed well and a second random
sample of size, say 36 (= n,), is drawn. Some of these, say 10 (= m,), will be black (previously marked)
and the rest (26 in this example) will be white (unmarked). We let u, = n, — m, = 36 — 10 represent the



unmarked balls in the sample. The basic assumption is that on the. average, that is, in terms of statistical
expectations, the ratio of marked balls to total balls in the population will be the same as the ratio of
marked balls in the sample—(n,/N) = (m,/n,) = M,/N.

In this example, therefore, the ratios to be set equal (and solved for N) are 30/N and 10/36:

30_10
N 36
or
Q- 30x36
10
=108

In terms of the symbols, n, (animals caught, hence marked, in the first sample), n, (total animals
caught in the second sample), and m, (marked animals caught in the second sample),

nn,

N=
m,

In ecology this equation is known as the Petersen-Lincoln estimator (see Seber 1973.:60).

One can continue to draw samples, recording on each occasion the numbers of marked, m,, and the
numbers of unmarked, u, balls. Each time; white balls are colored black before all are returned to the
urn. This conceptual “model” of capture studies has dominated the ecology literature for 30 years. Yet, it
is illogical to apply such a ball and urn model to biological populations because capture probabilities vary
in real populations and because there is not always an analogy in biological populations to the sides of the
urn. This lack of analogy is what creates difficulties in interpreting what N means.

The process of capturing living organisms is not analogous to the process of stirring up balls in an urn
and drawing a random sample. One cannot mix the population after each capture occasion; moreover,
animals will not mix themselves randomly and the capture process itself is potentially very complex.
Capture probabilities can vary over time, because of weather or the amount of effort expended on any
occasion to capture animals. Individual capture probabilities can vary because of innate factors
(heterogeneity), such as the age and sex of the animal, its social status, the number of traps in its home
range, or its. inquisitiveness. Finally, animals often exhibit a behavioral response to capture; hence the
capture probability of an individual can easily change after first capture. Ball and urn models never have
allowed for heterogeneity and only rarely (and recently) have allowed for limited degrees of behavioral
variations in capture probabilities, but models for estimating the abundance of populations of living
organisms must allow for these sorts of variations.

The most general conceptual model of capture probabilities