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DEDICATION 
 

This research is dedicated to the memory of 
 

Carrie Lynn Yoder 
(1976-2003) 

 

In addition to being a bright and gifted doctoral candidate studying the ecology and conservation 

of coastal environments, Carrie had an amazing affect on all those she came in contact with.  She 

was generous and her curiosity was insatiable.  She was an explorer and experienced traveler.  
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‘Beautiful glooms, soft dusks in the noon-day fire,- 
Wildwood privacies, closets of lone desire, 
Chamber from chamber parted with wavering arras of  

leaves,- 
Cells for the passionate pleasure of prayer for the soul  

that grieves, 
Pure with a sense of the passing of saints through the  

wood, 
Cool for the dutiful weighing of ill with good;- 

 
O braided dusks of the oak and woven shades of the  

vine 
While the riotous noon-day sun of June-day long  

did shine 
You held me fast in your heart and I held you fast in  

mine;’ 
 
 
Excerpt from: 
The Marshes of Glynn 
Written by Sidney Lanier in Baltimore, 1878.  Hymns of the Marshes (1907). 
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ABSTRACT 

As biological invasions have become a common phenomenon throughout the world, 

ecologists have intensified efforts to understand why natural communities are susceptible to 

invasion.  Invading species can cause shifts in community structure that result in irreversible 

changes to ecosystem function.  Phragmites australis has rapidly spread in North American 

coastal wetlands during the past 50 years and has become a dominant feature in Northern Gulf of 

Mexico brackish marshes.  The rate at which Phragmites is spreading or the mechanisms 

controlling its establishment in these marshes is unknown.  My research objectives were to: (1) 

determine the spatial and temporal patterns of Phragmites invasion and expansion; (2) evaluate 

how disturbance and nutrient enrichment controls brackish marsh invasibility and Phragmites 

establishment, and (3) identify the ecosystem impacts occurring within a brackish marsh during 

Phragmites invasion.  I found substantial increases in the abundance and size of clones of 

Phragmites during the past 75 years.  Annual increases of 11-23% occurred in area covered by 

clones, which had intrinsic rates of increase in size of 0.07 - 0.23 yr-1.   To test marsh invasibility, 

I manipulated both nutrient levels and disturbance regimes in conjunction with purposeful 

introductions of Phragmites seed and rhizome material.  Phragmites demonstrated the potential 

for active growth and spread when rhizomes were introduced into brackish marsh.  To examine 

the ecosystem impacts of Phragmites invasion, I located three isolated Phragmites invasions and 

identified four distinct community types along a transect from the center of each invasion to 

adjacent un-invaded marsh.  My results demonstrate for the first time that Phragmites increases 

marsh surface elevation relative to un-invaded marsh.  Phragmites invasion resulted greater 

aboveground biomass, increased organic matter accumulation and peat development and lower 

cellulose decomposition rates relative to un-invaded marsh.   
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The numbers and sizes of Phragmites invasions are increasing without apparent 

restriction in this Louisiana brackish marsh.  These communities remain vulnerable to future 

Phragmites invasions if rhizomes are transported to new locations.  Furthermore, Phragmites has 

an obvious affect as an ecosystem engineer and may allow invaded marshes to better tolerate 

increasing water levels due to sea-level rise/land subsidence than native short-stature graminoids. 
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CHAPTER 1 
THE ESTABLISHMENT, EXPANSION AND ECOSYSTEM EFFECTS  

OF INVASIVE SPECIES 

Introduction 

Species introductions and invasions have fascinated both biologists and ecologists 

for over a century (Elton 1958, Baker 1965).  More recently, however, these 

introductions and subsequent biological invasions have become recognized as posing a 

very serious threat to natural species biodiversity in natural areas on all continents, with 

the sole exception of Antarctica (Heywood 1989, Lonsdale 1999).  The recent increase in 

species introductions have been exacerbated by more frequent human travel (Ewel 1986, 

Thompson et al. 1987), while anthropogenic and natural disturbances (Hobbs and 

Huenneke 1992, Burke and Grime 1996) and nutrient enrichment of natural areas 

(Halpern et al. 1997, Gordon 1998) have been hypothesized to increase the success of 

non-indigenous species.  Furthermore, invading species have demonstrated the potential 

to significantly alter natural community structure and more importantly, natural 

ecosystem functions such as decomposition rates, nutrient transformations, fire cycles, 

and transpiration rates (Vitousek 1986, D'Antonio and Vitousek 1992, Cronk and Fuller 

1995, Luken and Thieret 1997, Schmitz et al. 1997, Walker and Smith 1997, Gordon 

1998).  Few studies have examined the relationship between disturbance and nutrient 

enrichment on community invasibility and invader success.  Furthermore, studies 

documenting ecosystem changes as a result of species invasion have not examined the 

rate of change over the course of the invasion.  To better understand the processes 

promoting the successful establishment of invading species, studies are needed to 

examine the combined effects of disturbance and nutrient enrichment on community 



2 

invasibility.  In addition, to understand the gradual physical and environmental changes 

caused by an invading species, ecosystem processes and functions must be examined 

over the course of the invasion.  This is imperative to understanding the rates at which 

invasive species alter endemic ecosystem processes and functions after successful 

establishment.  

The Process of Invasion 

The process of invasion by non-indigenous species has become the subject of major 

ecological debate and experimentation in the last four decades (Elton 1958, Wilson 1961, 

MacArthur and Wilson 1967, Simberloff and Wilson 1969, Mooney and Drake 1986, Cronk and 

Fuller 1995, Williamson 1996, Simberloff et al. 1997).  The process can be described through a 

generalized flow chart (Figure 1-1).  Immigration of invading species occurs through the 

translocation of living material from one region to another (Cronk and Fuller 1995, Bazzaz 

1996).  Often these arrivals occur through natural events that typically occur within the 

evolutionary time frame and spatial scale of the species involved (e.g., seed dispersal in plants by 

wind and water currents, animal dispersal through adherence and ingestion).  Long-distance 

dispersal events do take place, which establish species outside their normal range.  However, 

they occur irregularly and are difficult to document or observe.   

Long-term climactic changes can also affect species distributions.  The examination of 

historical pollen records demonstrate the long-term advance and retreat of forest species during 

glacial advance and retreat cycles (Rejmanek 1999), while fresh-water fish distributions in 

Canada have been predicted to change as a result of global warming (Minns and Moore 1995).  

Furthermore, global warming has been predicted to extend the northern boundaries of migrating 

birds (Repasky 1991).  In addition, as global temperatures increase, shifts in species interactions 
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have been documented.  Warmer temperatures have been correlated with a decline of net aerial 

primary productivity in C4 grasses with increased abundance and production in exotic and native 

C3 forbs (Alward et al. 1999). 

 

 

 

 

 

 

 

 

 

Figure 1-1. The process of invasion. 

 

In contrast to natural dispersal and invasions, human aided dispersal events can occur 

over much larger (unnatural) evolutionary spatial and temporal scales (Baker 1986).  

Anthropogenic activities can by-pass an organisms natural dispersal mechanisms, and result in 

the “inoculation” of new areas far removed from the organisms natural range and their natural 

control agents (Ewel 1986, Hengeveld 1989, Brothers 1992, Veit and Lewis 1996, Gordon 

1998).  Accidental dispersal of exotic species can occur through ship ballast water, impure crop 

seed, or in soils surrounding nursery stock, while deliberate dispersal can occur by the purposeful 

transport of forage, ornamental and medicinal plants, or species that perform a service (Baker 

1986). 
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As such, introduced plants are given a “free ride” from the perspective of dispersal.  Even 

if they have not evolved a long-distance dispersal mechanism, humans bypass this by 

transporting species long distances.  Successful establishment is contingent on suitable habitat 

and if an adequate number of propagules have been deposited.  Therefore, anthropogenic 

immigrations are likely to change the types of species that are most likely to invade.  In addition, 

most of these establishments occur in the absence of the natural controls acting on species in 

their native habitat (Crawley 1986).  Natural enemies can prevent invasion, or reduce rates of 

spread of invading species (Sheldon and Creed Jr. 1995).  Furthermore, high competition 

intensities between native and introduced species may also decrease establishment success, and 

therefore reduce the invasibility of certain environments (Simberloff and Wilson 1969, Crawley 

1986, Hengeveld 1989, Duncan 1997, Tilman 1997). 

Human influence upon natural areas can indirectly favor the establishment of introduced 

species by reducing native species densities and altering natural environments (Brothers 1992).  

Prolonged human alteration in environments, such as lowering water tables through drainage or 

nutrient enrichment, can provide favorable habitats for non-indigenous species, and less 

favorable habitat for native species (Ewel 1986).  Even if habitats are undisturbed and non-

indigenous species are established in small isolated areas, a major disturbance (i.e., hurricanes, 

fire) could release expansion barriers and allow species to rapidly spread (McGinley and Tilman 

1993, Horvitz et al. 1998). 

Establishment Characteristics 

Once introduced, the species become established within the site of initial introduction.  

Several factors influence the successful establishment of new species.  To establish successfully, 

the species first must be pre-adapted for that environment (Ewel 1986), or be able to survive in a 



5 

wide range of habitats (a generalist species, sensu Wilson 1961).  A major attribute of 

evolutionary success in a colonizing species is to survive in marginal habitats (Wilson 1961).  

During colonization and establishment of species in new areas, the prime habitat is often 

occupied by other species.  Therefore, a species with a general adaptation will be favored over 

those that are more specific.  An additional quality of being a successful generalist is the ability 

to replace competitors in areas of ecological overlap.  The ability to survive and reproduce in 

marginal areas would allow growth of the population, and potentially to evolve adaptations that 

would favor introduced species over indigenous species.   

Competition between native species and colonizers can affect colonizer success and 

establishment (Wilson 1961, Roughgarden et al. 1984, Crawley 1986, Duncan 1997, Halpern et 

al. 1997).  In faunal colonization, interference competition often occurs, with the larger 

organisms usually displacing the smaller (Roughgarden et al. 1984).  In plant communities, 

competition has been hypothesized to reduce the success of colonizing species (Baker 1986, 

Wiser et al. 1998).  Often, increased species diversity is related to high levels of competition 

(Baker 1986, Tilman 1994, 1997).  Experimental evidence has demonstrated, however, that this 

hypothesis does not always hold true (grasslands - Robinson et al. 1995; forests - Wiser et al. 

1998).  Both of these studies demonstrated that species rich plots with high rates of competition 

were more invasible than plots with low species diversity and low competition. 

The Spread of Invasive Species: Pattern of Spread 

Once established, small populations can either decline to extinction, or begin to spread.  

The pattern of spread is important, and allows some inference to the type of invasion occurring.  

The rate of spread will depend on several factors, which are termed post-establishment 

characteristics (Crawley 1986, Johnson and Carlton 1996).  These variables can include certain 
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life history traits of the colonizing species, such as shade tolerance, vegetative growth form, and 

dispersal mechanisms, and be affected by allee and age dependent characteristic of the invader 

(Bazzaz 1986, Lewis and Kareiva 1993, Pyle 1995).   

There are two basic patterns of spread that can occur once an introduced species becomes 

established.  Populations can demonstrate a steady advance through an environment, such as a 

moving front.  Mathematical models have been developed to predict the speed at which these 

invasions take place (Fischer 1937, Skellam 1951).  The rate of advance is proportional to the 

square roots of the area occupied at each time, and is dependent on the intrinsic rate of natural 

increase for that species.  The intrinsic rate of increase changes with fecundity, survivorship, 

developmental rate, and the number of generations produced per year (Crawley 1986).  This 

method of population advance can be maintained by clonal-growth characteristics in plants. 

The second pattern of spread occurs when invaders radiate from multiple, separated 

populations, or through the dispersal and repeated establishment from a founder population.  A 

“filling in of the gaps” follows this between the new “satellite” populations and the founder 

population (Guzikowa and Maycock 1986, Kruckeberg 1986, Moody and Mack 1988, Lonsdale 

1993, Husband and Barrett 1996, Weber 1998).  This mode of population growth is directly 

related to the ability of the colonizing species to establish through the dispersal of viable seeds to 

surrounding areas, and germinating in a suitable habitat.  This pattern of spread may be more 

likely to succeed in variable environments where dynamic changes or disturbances are produced. 

Although populations of colonizing species are often characterized by exponential 

growth, there is often a lag time between the process of establishment and active spread.  The 

process has been observed for many species, although little experimental work has been 

conducted to determine the causes (Bazzaz 1986, Ewel 1986).  Several hypotheses exist, and 
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include: 1). Non-indigenous species may have been introduced into pristine conditions (i.e. less 

altered by man) and those environments are subsequently more invasion-resistant.  Recent 

anthropogenic changes in habitat may have created environments more favorable to the 

introduced species, allowing distributions to expand; 2). Populations may have been expanding 

all along, but escaped notice until populations became a conspicuous component in the 

environment; 3). Introduced species may have been restricted to small populations in the natural 

habitat or on disturbed areas.  These populations may persist over time, showering local areas 

with seed, and then emerging when a major disturbance occurs; 4). Populations occupying 

disturbed habitats may evolve adaptations over time, thus enabling more rapid colonization of 

adjacent habitat (Baker 1965). 

The Spread of Invasive Species: Rate of Spread 

The rate of spread is typically determined by the processes occurring at the leading fringe 

of the population (Williamson 1996).  If spreading in a traveling wave, the processes may be 

either at the front edge (“pull”) or involve the entire front (“push”).  In either case, this does not 

usually involve the population behind the front to any extent (Lewis and Kareiva 1993).  

Interestingly, if the rate of population growth is not maximal at the lowest population densities, 

for reasons of age structure or of Allee effects, then the rate of expansion will be slower (Lewis 

and Kareiva 1993, Veit and Lewis 1996).  Age structures (individuals of different ages having 

different characteristics such as reproductive or growth rates) can have marked effect on 

population dynamics.  Allee effects, or low density effects, include difficulties in finding a mate 

or successful pollination, greater risk of predation or herbivory, or inbreeding effects (Kot et al. 

1996, Veit and Lewis 1996).  If such effects are present, the population may fail to spread if the 

initial invasion has too few individuals or occupies too little space. 
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Interactions between invading and native species have been incorporated into the fabric 

of several models (Crawley 1986, Okubu et al. 1989, Higgins et al. 1996).  Competition has been 

identified as a major determinate in the success or failure of invading species (Okubu et al. 1989, 

Duncan 1997).  If competition is intense, the rate of spread for the invading species will likely be 

reduced (Duncan 1997), and in some cases stopped (Wilson 1961, Roughgarden et al. 1984).  

However, if the invader is a better competitor, the native species have been shown to yield 

(Roughgarden et al. 1984, Okubu et al. 1989).   

Once invasive species become established, eradication or removal is often exceedingly 

difficult (Forcella 1985, Ewel 1986, Johnson and Carlton 1996).  To stop invasive species 

spread, active campaigns against invasive species have been initiated (Williamson 1996) as well 

as the control of invasive species through the introduction of biological control agents (Daehler 

and Gordon 1997).  It is rare that that introduced species are eradicated completely, however 

examples of successful campaigns through intensive control and eradication efforts exist. 

(Williamson 1996).  These programs however, also had detrimental effects on other species as 

well.  The common thread between these campaigns is that efforts were initiated early in the 

establishment period of the invading species.   

The uses of biological control on invasive species have also been conducted (Hoffman 

and Morgan 1991, Hight et al. 1995).  However, the use of introduced organisms to control 

invasive species has been the subject of heated discussion and controversy (Simberloff and 

Stiling 1996, Daehler and Gordon 1997, Corrigan et al. 1998, Freckleton 2000, Fagan et al. 

2002).  Introductions have been made that not only slowed invasive spread, but shifted 

preferences to native species (Louda et al. 1997).  Therefore, more pressure has been placed on 

experimental study and ecological ramifications of introduced biological control species. 



9 

Invasibility of Communities 

Many generalizations pertaining to the susceptibility of communities to invasion 

by exotic plant species have been made (Elton 1958, Crawley 1986, Richardson and 

Bond 1991, Robinson et al. 1995, Wiser et al. 1998).  Elton (1958) first proposed that 

communities having low species diversity are more susceptible to invasion from outside 

species due to low interspecific competition.  Furthermore, Crawley (1987) hypothesized 

that in addition to lower interspecific competition, those communities with lower species 

diversity may contain more open niches, allowing invasive species demonstrating those 

characteristics to become successfully established.  Several studies have supported this 

viewpoint by demonstrating a negative relationship between native and exotic species 

richness (Rejmanek 1989, Tilman 1997, Woods 1997).  On the other hand, positive 

relationships between native and exotic species richness have been shown as well (Knops 

et al. 1995, Robinson et al. 1995, Wiser et al. 1998).  Those communities exhibiting 

higher native species diversity may promote the establishment of exotic species in the 

same manner that led to initial high natural species diversity (Crawley 1987).  In addition, 

naturally diverse communities may be lacking one or more dominant species, allowing a 

dominant or aggressive invader to successfully establish (Robinson et al. 1995), or a 

naturally diverse community with high spatial/temporal variability in both abiotic and 

biotic factors may promote the successful establishment of invading species (Tilman 

1997, Wiser et al. 1998). 

Invasibility, although affected by community structure, may also be influenced by 

the intensity and frequency of disturbance.  The extent to which communities experience 

disturbances through grazing (Schierenbeck et al. 1994, Burke and Grime 1996) and 
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natural or anthropogenic habitat alteration (Higgins et al. 1996, Horvitz et al. 1998, Wiser 

et al. 1998) may change the rates at which invasion occur.  Grazing may influence an 

invaders success directly through altering resource availability (Burke and Grime 1996), 

or indirectly by changing biotic interactions and subsequently community structure 

(Richardson and Bond 1991).  Therefore the impacts that disturbances have on the 

invasibility of communities are often difficult to separate between those directly and 

indirectly affecting community structure. 

Ecological Impacts 

Invasive species can have both direct and indirect effects on the populations of 

native species and the invaded ecosystem.  Invaders can directly affect native species by 

reducing seedling germination and survival through litter deposition (Vitousek and 

Walker 1989, Walker and Vitousek 1991), reducing available light and moisture 

(D'Antonio and Vitousek 1992), or by altering disturbance regimes thereby decreasing 

establishment success of native species (Mack and D'Antonio 1998, D'Antonio et al. 

2000).  Invasive species can affect ecosystems indirectly by altering competitive 

processes and changing soil biogeochemistry, geomorphology and hydrology (Vitousek 

and Walker 1989, Gordon 1998, Mack and D'Antonio 1998).  For instance, invasive 

Acacia species have been shown to alter levels of fixed nitrogen and carbon cycling 

through increases aboveground production and litterfall rates (Macdonald and Richardson 

1986).  Likewise, Sapium sebiferum (Chinese tallow) invasions in South Texas have been 

shown to increase soil nitrogen availability, and have been hypothesized to facilitate 

conversion of natural open prairie to wooded areas (Cameron and Spencer 1989).  As 

invading species move across community boundaries, changes in ecosystem function and 
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diversity should be expected (Simberloff 1981, Vitousek 1986, 1990, Vitousek et al. 

1996, Parker et al. 1999).  When examining the effects of invaders on native species, it is 

difficult to determine if invaders are out competing natives or altering ecosystem 

properties and disturbance regimes, thus preventing native species from maintaining 

viable populations. 

Conceptual Model of Ecosystem Effects 

As natural areas are invaded by non-indigenous species, changes become readily apparent 

in vegetative community structure and species diversity.  Less apparent, however, are the 

ecosystem effects of invading species on physical and environmental factors such as 

biogeochemical processes (e.g., nutrient pools, carbon cycling), geomorphology (e.g., peat 

accumulation, soil composition changes, surface elevation change) and hydrology (e.g., water 

table levels).  Furthermore, the rates at which these changes in function take place relative to 

invasion remain largely unexamined in invasive species literature.  Processes operating on the 

ecosystem level develop over time.  Thus, it would be intuitive to think that gradual changes take 

place over the course of an invasion (Figure 1-2).   

Research Rationale 

The study of biological invasions has recently become an issue of great concern for many 

ecologists (Vitousek 1990, Gordon 1998, Mack and D'Antonio 1998, Lonsdale 1999, Schweitzer 

and Larson 1999, Smith and Knapp 1999, Tilman 1999).  Noticeably lacking, however, are 

experimental studies integrating the rate of spread of invaders, community invasibility and  

successful invader establishment characteristics, and furthermore, examining the changes 

occurring in ecosystem functions over time to a biological invasion (Carroll and Dingle 1996, 

Parker et al. 1999, Smith and Knapp 1999).  With this research, I test and integrate hypotheses  
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Figure 1-2.  Change in ecosystem function over time as a result of invasion. 

 

concerning: 1) the rates and patterns of invasive species spread; 2) the effects of disturbance and 

nutrient enrichment on community invasibility and establishment success of an invading species; 

and 3) the consequence of invasive age on the structural, environmental and biogeochemical 

processes that occur within natural vegetation.   

The Model Species: Phragmites australis 

Although many examples of invasive plant species exist in North America (e.g., Imperata 

cylindrica (cogon grass- Southeast US), Pueraria lobata (kudzu- Southeast US), Lythrum 

salicaria (purple loosestrife- Northeast US), Spartina anglica (cordgrass- West Coast, US), 

Carpobrotus edulis (ice plant- West Coast, US), etc.), considerable attention has recently been 

placed on Phragmites australis (Cav.) Trin.  ex Steudel, the common reed (hereafter referred to 

as Phragmites).   
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Phragmites is an emergent clonal grass, with tall culms (> 3 m) emerging from perennial 

underground rhizomes (Ekstam 1995).  It is considered the most widely distributed angiosperm 

in the world (Bird 1962), and is a native component of North American wetlands (Orson et al. 

1987, Cross and Fleming 1989).  Phragmites often grows in monotypic stands, especially in 

disturbed or impounded areas, and stands are typically composed of 80-100 aerial shoots per 

square meter (Haslam 1972).  Establishment of Phragmites most typically occurs through 

transport of vegetative material.  Although germination from seed does occur, it is not common 

(Cross and Fleming 1989).  Seeds must be kept moist in order for germination to occur, and must 

remain wet until the seedling become successfully established.  Stems produce tassels in late 

summer, but may begin to flower as early as mid-July.  In most stands, approximately half of the 

stems will produce flowers, which subsequently die.  These stems can remain standing for up to 

4 years (Haslam 1972).  Seeds generally ripen in late September, and are dehisced as 

inflorescences dry throughout the winter. 

Rhizomes are responsible for maintaining the stand, and is where carbohydrate nutrient 

reserves and hormones are stored (Ekstam 1995).  Rhizomes grow most rapidly from late 

summer to early winter, and can grow as deep as 1 m (Burdick et al. 2001).  Underground buds 

are formed in the fall, and typically remain dormant through the winter (Haslam 1969).  Buds 

formed early are much larger than those formed later in the season due to the large amount of 

nutrient reserves available in the early portion of the season.  In addition, Phragmites can 

mobilize rhizome carbohydrate reserves quickly, and can produce culms as tall as 1 m within two 

weeks after disturbance events remove aboveground vegetation (L. Stanton, pers. obs.). 
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Problems Associated With Phragmites 

Phragmites historically has been considered a minor component of tidal wetland plant 

communities in North America (Orson et al. 1987).  Within the past 50 years, however, this 

cosmopolitan wetland species has aggressively expanded its distribution throughout many 

freshwater, tidal brackish and salt marsh communities in the United States, forming large 

monospecific stands (Phillips 1987, Buck 1995, Chambers et al. 1999).  Although this spread has 

been especially apparent in salt marshes in the Mid-Atlantic States (see Chambers et al. 1999), 

populations are rapidly expanding in coastal marshes in the Northern Gulf of Mexico.  It is clear 

that Phragmites is invading areas where it previously did not occur, yet the factors contributing 

to the initiation and subsequent spread of Phragmites are not well known. 

Phragmites is native to Louisiana (Montz 1977, White 1983), occurring over large areas 

in the Mississippi River Delta and Chenier Plains of southwestern Louisiana.  This species has 

been observed to be invading coastal habitats in Louisiana (Tom Hess, LDWF, Rockefeller 

Refuge, pers. com.); it frequently occurs along both canals and the edges of natural marshes in 

salt, brackish and freshwater areas.  Additionally, Phragmites is invading the interior of natural 

marshes, forming large populations that replace the indigenous vegetation (Cronk and Fuller 

1995).  Because populations (sensu Harper 1977, Cronk and Fuller 1995) of this species form 

large circular stands with culms of 3-4 m that are much taller than the short indigenous grasses 

(Spartina patens and Distichlis spicata), invasions are particularly noticeable, even from a 

considerable distance.  These stands form Phragmites “islands”, varying in size and age, 

surrounded by an expanse of the indigenous S. patens/D. spicata short grass habitat.  No research 

to date has quantified the distribution, rate of expansion, and effects on ecosystem processes of 

Phragmites invasions in Louisiana. 
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The causes of the recent expansion of Phragmites in North America vary.  One theory 

attributes its spread to changes in the abiotic and biotic environment related to human 

disturbance of water flows and heavy development pressure in coastal areas (Chambers et al. 

1999).  These disturbances, exacerbated by natural sea level rise and land subsidence, could 

potentially act together to cause large shifts in vegetative community structure in coastal 

wetlands (Rooth and Stevenson 2000).  Similarly, it has been suggested that increasing nutrient 

levels in coastal waters caused by agricultural runoff, urban runoff, and the loss of wetland area 

may also contribute to increased Phragmites growth and hasten subsequent spread (Clevering 

1998, 1999, Romero et al. 1999, Ostendorp et al. 2001).  Furthermore, an aggressive invasive 

genotype originating from Europe has been identified through both field samples and herbarium 

collections (Saltonstall 2002), and is reported to be responsible for much of the observed spread 

along the eastern seaboard of the Unites States.  Other than being identified at the mouth of the 

Mississippi River, it is not known to what extent this genotype has invaded the gulf coast 

(Saltonstall 2003). 

The Cascading Ecosystem Effects of Phragmites 

The colonization of Phragmites can have significant effects on both the structure and the 

function of the ecosystem.  Typically, there is a decline in plant species diversity (Chambers et 

al. 1999).  The resultant monospecific stands of Phragmites have considerable potential for 

altering natural ecosystem processes, such as nutrient cycling (Dinka and Szeglet 1999, 

Ostendorp et al. 2001, Windham and Ehrenfeld 2003, Windham and Meyerson 2003), 

decomposition rates (Mendelssohn et al. 1999, Windham 2001, Van Der Putten 2003), 

sedimentation rates (Rooth and Stevenson 2000, Rooth et al. 2003), and soil biogeochemical 
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cycles (Portnoy 1999).  However, examining how ecosystem processes change relative to the age 

of the population has been given little scrutiny.   

Research Questions and Objectives 

This research addresses two overriding questions related to plant invasions:  (1) what 

controls the invasibility of brackish marsh and the successful establishment and expansion of an 

invasive plant? (2) How does the age of the invasive plant community affect physical, 

environmental and biogeochemical processes?  The following objectives address these questions. 

 

1. Determine if and how the spatial distribution of invasive species populations and their time 

of establishment aid in assessing mechanisms of invasion and success. 

2. Evaluate the effects of disturbance and nutrient enrichment on the invasibility of brackish 

marsh and the successful establishment of an invasive plant. 

3. Quantify the effects of species invasion and population age on the structure and ecosystem 

function of the natural un-invaded plant community. 

 

To address these objectives, I conducted three studies in brackish marsh in Southwestern 

Louisiana where Phragmites invasion is occurring.  To evaluate the rate and pattern of 

Phragmites spread (Chapter 2), I examined and compared historic aerial photography using 

Geographic Information Systems (GIS).  To test brackish marsh invasibility and the successful 

establishment of Phragmites, I manipulated both nutrient levels and disturbance regimes in 

conjunction with purposeful Phragmites introductions (Chapter 3).  And lastly, I examined the 

ecosystem impacts of Phragmites invasion within three isolated communities of Phragmites and 

identified four distinct community types along a transect from the center of each Phragmites 
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community to the adjacent un-invaded marsh (Chapter 4).  I measured variables specific to soil 

composition, decomposition, peat development, marsh surface elevation and biomass production 

over the course of a 40 year Phragmites invasion.  

My results indicate that the numbers and sizes of Phragmites communities are increasing 

without apparent restriction in this Louisiana brackish marsh and are likely to replace this native 

community.  Although seedling emergence was not observed throughout this study, this 

community remains vulnerable to future Phragmites invasion if rhizomes are transported to new 

locations.  Furthermore, Phragmites had an obvious effect as an ecosystem engineer.  Marsh 

surface elevation in Phragmites increased relative to un-invaded marsh by greater organic matter 

accumulation, peat development and lower cellulose decomposition rates.  These effects may 

allow Phragmites dominated marshes to better tolerate increasing water levels due to sea-level 

rise/land subsidence than native short-stature graminoids.  
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CHAPTER 2  
POST-INVASION DYNAMICS OF PHRAGMITES AUSTRALIS,  

THE COMMON REED 

Introduction 

Most native species are not considered invasive in their home region.  There are, 

however, cases of native species that invade relatively undisturbed habitats, to the detriment of 

other native species (Baker 1996; Brewer 2002).  Such invasions by species within their native 

regions are poorly understood (MacArthur and Wilson 1967; Simberloff and Wilson 1969; Baker 

1996).  

The dynamics of invasions by both native and exotic species appear similar.  The 

invasion process typically begins with initial immigration by one to several individuals.  

Although immigration of plants may be restricted by dispersal (e.g., Tilman 1997), 

anthropogenic introductions bypass this block, perhaps for both native and exotic invasions.  

Over time, colonizers appear to become adapted for the new environment or persist until 

environmental conditions become favorable (Horvitz et al. 1998).  Like exotic species, native 

invading species may occupy specific habitats when invading a new area.  There they may 

persist until environmental conditions become more favorable, if there is a large-scale natural or 

anthropogenic disturbance that releases competitive restraints, or if selection removes less-fit life 

history traits (Orians 1984; Hobbs and Huenneke 1992; Carroll and Dingle 1996; Luken and 

Thieret 1997; Alward et al. 1999).  Ultimately, these invasive species initiate unchecked growth 

and rapidly spread at some point in the invasion process.  The invasion often goes unnoticed 

until the population has expanded beyond control, thus documentation of the initial invasion 

process is often incomplete (Moody and Mack 1988). Moreover, environmental conditions and 

ecological processes contributing to unchecked growth have only rarely been described, 
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especially for invading native species (Guzikowa and Maycock 1986; Baker 1996; Weber 1998; 

Brewer 2002).   

One native species of particular concern is the common reed, Phragmites australis (Cav.) 

Trin. Ex Steud., which has spread rapidly in North America during the past 50 years.  Although a 

native species occurring both in coastal fringing and inland fresh water marshes throughout 

North America (O'Neil 1949; Nichols 1959b; Montz 1977a; b; Neiring  and Warren 1980; Orson 

1987; Winogrond and Kiviat 1997; Galatowitsch et al. 1999; Clevering and van der Toorn 2000; 

Rice et al. 2000), Phragmites australis (hereafter referred to as Phragmites) has invaded 

freshwater, coastal brackish and salt marshes of the mid-Atlantic region of the United States, 

often forming large monospecific stands (Chambers et al. 1999; Meyerson et al. 2000).    

Likewise, Phragmites has become invasive in brackish and salt marshes in coastal Louisiana 

(Hess Jr. personal communication).  Not only has it frequently invaded the edges of bayous and 

canals, but Phragmites is also invading undisturbed interior areas of natural salt and brackish 

marshes (Stanton personal observation).  It’s 3-4m culms are much taller than the short (typically 

< 1 m tall) vegetation in coastal marshes (Cheplick 1998), and forms large circular stands (which 

we refer to as clones or colonies without implying genetic homogeneity) that easily replace the 

natural vegetation (Cronk and Fuller 1995; Chambers et al. 1999; Galatowitsch et al. 1999). 

The invasion of Phragmites provides an opportunity to examine native species invasions 

in relatively undisturbed coastal environments.  Its distinct growth form and signature on aerial 

photography is easily identified.  We address two questions in this study: What is the rate of 

spread by Phragmites stands in coastal marshes?  Do expansion rates differ with age or 

environment?  We used post-invasion expansion rates to predict possible immigration periods for 

present-day Phragmites stands as well as future expansion and spread.  We used the expansion of 
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invading Phragmites stands over the last 60 years to project future clonal spread in a brackish 

marsh in Southwestern Louisiana. 

Methods 

Study Site  

Rockefeller Wildlife Refuge (29°55' N and 92°30' W) is located within the southeastern 

portion of the Chenier Plain Region (Cameron Parish, LA; Figure 2-1).  It is bordered on the 

south by the Gulf of Mexico, on the north by the Grand Chenier Ridge complex, and contains 

about 32,000 hectares.  It was purchased by the Rockefeller foundation in 1914, and 

subsequently deeded to the state of Louisiana in 1920 under the mandate to “preserve, maintain, 

and improve the refuge lands in perpetuity”.  The majority of the refuge is actively managed 

through water control structures designed to maximize food for waterfowl (Wicker et al. 1983).   

Phragmites has historically been present in the refuge, but only in fresh and oligohaline 

marsh communities (O'Neil 1949; Nichols 1959b).  In the 1940’s and 50’s, before marsh 

management, Phragmites distributions did not extend into brackish and saline marsh habitats  

from surveys of the area (O'Neil 1949; Nichols 1959b).  Phragmites has spread quickly, 

occurring on canal banks in salt marsh areas and as discreet circular stands in relatively 

undisturbed brackish marsh. 

In this study we focused on a 1000-hectare portion of brackish marsh on the western 

border of the refuge.  The majority of this area, which is bounded to the south by the Gulf of 

Mexico, has remained unmanaged since the inception of the refuge.  It is comprised of Spartina 

patens and Distichlis spicata, with sparse inclusions of Schoenoplectus robustus and Juncus 

roemerianus.  Spartina alterniflora is also present, but is restricted to areas adjacent to water  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-1.  Location of Rockefeller Wildlife Refuge, Louisiana.  The refuge lies in southwestern Louisiana on the border between 
Cameron and Vermillion Parishes.  The northern boundary of the refuge is the Grand Chenier Ridge complex, a natural ridge formed 
by erosional processes and then stranded inland after accretion events. 
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(Nichols 1959b).  Discrete stands of Phragmites are present within both managed and 

unmanaged areas.   

Phragmites Expansion 

To determine the extent of the Phragmites invasion, clones in the study area were 

mapped using GPS (March, 1999).  Each GPS measurement was differentially corrected and had 

an accuracy to within 1 meter.  Ground-truthed Phragmites clones in the marsh were compared 

to signatures observed on color-infrared 1998 aerial photography (National Aerial Photography 

Program) using surveys conducted from both airplanes and airboats.  The Arc View geographic 

information system (ERDAS, version 8.4) was employed to create a base map of the study area 

in 1998 from Digital Orthophoto-Quarter Quadrangles.  The spread of Phragmites was estimated 

based on numbers and size of clones located in the field and on aerial photographs. 

Black and white aerial photographs and high altitude color-infrared photographs were 

obtained for eight different times: 1933, 1955, 1968, 1978, 1982, 1985, 1995 and 1998 (Table 2-

1).  Nine-inch contact transparencies of the original photographs were digitized using a high-

resolution digital scanner (600 dpi).  Each frame was then mosaiced and rectified to the base map 

using Imagine (ERDAS, version 8.4).  Clones of Phragmites in the marsh tend to form large 

circular areas and have a distinctive brown to pinkish signature that is discernible from other 

marsh vegetation (Figure 2-2).  In addition, the height differentiation between Phragmites and 

the shorter graminoids allowed clones to be differentiated using stereoscopic pairs of aerial 

photography.  The comparison of field observations with signatures obtained from aerial 

photography enabled us to identify the smallest stands that were readily detectable in the 

photographs.  Several smaller clones did not exhibit stem densities great enough to be detected 

on aerial photography, although stands were identified in the field.  Thus, some low-density 
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Table 2-1. The year, scale (inches), type and source of aerial photography used in this study. 

Year  Scale  Type  Source 

1933  1:18,000  Black and White  Tobin Research 

1955  1:24,000  Black and White  Tobin Research 

1968  1:40,000  Black and White  Tobin Research 

1978  1:40,000  Black and White  Agricultural Stabilization and Conservation Service 

1982  1:24,000  Color Infra-red  Agricultural Stabilization and Conservation Service 

1985  1:65,000  Color Infra-red  USGS/NAPP 

1995  1:32,500  Color Infra-red  USGS/NAPP 

1998  1:40,000  Color Infra-red  USGS/NAPP 

 

colonies may persist undetected on aerial photography until stem densities increase.  Dense 

stands of Phragmites with diameters greater than approximately 5 m were readily measurable in 

the aerial photographs; thus we limited our measurements of rates of spread to established stands 

of at least a diameter of 5 m.   

We estimated the area of each clone from the aerial photography.  Polygons were 

constructed around each Phragmites colony using Arc View (ERDAS, Version 8.4) and the 

digital 1998 color-infrared photographic images.  Each clone was then followed backward in 

time through each photo set to the smallest sizes at which each stand was measurable using 

stereoscopic pairs. These data were used to estimate rates of increase in the sizes of clones, as 

well as changes in the number of clones within the marsh.  Only those clones that could be 

measured on the 1998 photography were included in this study. 

Expansion Analysis Methodology 

Although studies describing clonal expansion rates using simple deterministic growth 

models have appeared in the literature (Rice et al. 2000; Warren et al. 2001), stochastic models 
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Figure 2-2.  Circular Phragmites clones are evident from aerial photography (Photograph A) 
taken May 1999 (scale = 1:40,000).  Lower altitude photography demonstrates the striking 
differences between Phragmites and the natural Spartina patens/Distichlis spicata community.  
Also evident in the lower altitude photography are other Phragmites stands (background right in 
Photograph B).  Phragmites appears to be actively spreading in Photograph C (note ramet 
extensions spreading outward from the main population).  The clone size in Photograph B is 
estimated at 80 m in diameter, while the size of the clones in Photograph C are smaller, 
measuring approximately 35 m in diameter. 
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should provide greater predictive power in examining past changes in expansion rates as well as 

providing future estimates.  Three methods were used to assess Phragmites expansion rates in  

this study: 1) a non-linear approach, 2) a linear approach where effects were assumed fixed, and 

3) a linear approach where Phragmites clones were assumed to be members of a random 

population.  The non-linear equation is based on the Malthusian exponential growth model where 

growth rates are expressed as the intrinsic rate of increase (r).  In contrast, a linear analysis using 

log-transformed data gives statistical latitude in assigning effects as either fixed or random.  The 

fixed effect model yields growth estimates and standard errors for each individual colony, 

whereas the random effect model considers the observed colonies to be a random sample from a 

potential population of clones and thus gives one expansion estimate and standard error. 

Non-linear Growth Model 

The expansion of Phragmites was estimated using a nonlinear growth model to estimate 

an “intrinsic” rate of increase in clone size.  We used the exponential growth model: 

(1). N0= Ntert 

Where N0 represents the area at time 0, Nt is the area at time t since initial observation, r reflects 

the intrinsic rate of increase in area of the clone.  To estimate the intrinsic rate of increase, all 

area and time data were included for each stand.  Nonlinear estimation gave an estimated r and 

an associated standard error for each clone (SAS PROC NLIN, 1999). 

Linear Expansion Models: Fixed Effects Analysis 

Alternatively, a linear model may be considered using log(area) as the response.  In 

contrast to the nonlinear model discussed above (where initial areas are a fixed multiplicative 

constant), the linear model calculates a y-intercept for each colony (or colony effects).  An 

analysis of covariance model yielded a significant time by colony interaction (p < 0.0001) and 
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suggested different linear regression lines for each colony.  Estimated intercepts and slopes for 

these fixed effect models were determined using PROC GLM in SAS (SAS Institute, Inc. 1999). 

Linear Expansion Models: Random Effects Analysis 

The use of a random effects ANCOVA increased the scope of the analysis.  The observed 

clones were considered to be a random sample from a potential population of clones.  The 

observed expansion rates (slopes) and initial areas (intercepts) were treated as measurements 

from a population of possible parameters.  The intercepts βoi were assumed to be normally 

distributed with mean µβo and variance σ2
βo, the slopes were assumed to be normally distributed 

with mean µβ1 and variance σ2
β1, and the errors were assumed to be normal with mean 0 and 

variance σ2.  The random intercept allowed for variability in the colony’s initial area (taken to be 

at time = 0); thus, the starting area of each colony could be different.  The randomness assumed 

in initial starting area may be interpreted as variability in time from true colony establishment to 

actual observation on the photography, or it may represent randomness in the quality of the 

initial photograph, while the variability in expansion rates among colonies is likely due to 

differences in environmental conditions and genet growth rates. 

Colony Expansion Contrasts 

Once the intrinsic rates of expansion (non-linear estimate) and fixed effects expansion 

rates (linear estimate) were determined for each Phragmites colony, data were analyzed using a 

Student T-test.  Colonies were divided into groups based on first appearance in each year set of 

photography (1968, 1978 and 1982).  These colonies were then compared to determine if 

significant differences in rate of spread arose based on time of first observation, or alternately, 

based on the age of the colony.  In addition, colonies were separated and compared based on 



35 

growing environment (growing in unmanaged and those growing in water management areas) 

and if adjacent to open water areas. 

Results 

Phragmites Colony Abundance and Size 

Twenty-eight distinct Phragmites clones were identified and delineated within the study 

location through initial ground-truthing.  Twenty of these were of sufficient size and density to 

be positively identified on the 1998 photography (Table 2-2).  Only clones visible on more than 

2 dates were included in the analysis; thus, 2 clones first observed on the 1995 aerial 

photographs were excluded.  Of the 18 remaining clones, clones 8 and 10 were a result of the 

merging of 3 smaller clones first observed on the 1995 photography (Table 2-2).  To remain 

consistent within the models, the areas of the separate clones prior to coalescence were included 

in the analysis (four data points in each case), but combined areas after merging were omitted.  

Thus, a total of 22 clones were included in the analysis (Table 2-2).  Initial clone sizes, measured 

from photography, ranged from 6 to 204 m2, and measurements in 1998 ranged from 174 to 

11,471 m2 (Table 2-2). 

Phragmites was first observed in the 1968 aerial photographs.  These clones have steadily 

increased in number since that time (Figure 2-3).  No evidence of Phragmites was found on 

either the 1933 or the 1955 black and white photographs.  The 1933 and 1955 photographs were 

taken at a much lower altitude relative to other photography used in this study and had high 

contrast and resolution, thus it is unlikely that any existing Phragmites clones at least 5 m in 

diameter would have been overlooked (Table 2-1).  Thirteen clones were first observed in 1968, 

and two new clones appeared in 1978.  Six clones were first observed in 1982.    Phragmites 

occurred in both water-managed areas (4 clones) and in unmanaged areas (17 clones).   
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Table 2-2. Area (m2) of Phragmites clones from initial appearance in aerial photography until 
1998.  No clones > 5 m in diameter were visible at that time on 1933 and 1958 photographs. 
Clones 1, 5, 6, 15 and 27 were not visible in 1985 due to the small scale of the photography.  
Two stands present in 1998 were three converged clones each. 
 

Clone  1968  1978  1982  1985  1995  1998 

1  -  -  61  -  163  570 
4  -  -  94  125  450  785 
5  -  -  417  -  2537  3935 
6  10  38  54  -  173  265 
7  41  188  483  784  1895  2281 

8 total  127  385  1266  1948  3446  3463 
8A  64  193  633  974  Converged  Converged 
8B  46  138  443  742  Converged  Converged 
8C  17  55  190  232  Converged  Converged 
9  -  33  178  389  1642  1639 

10 total  64  199  693  1056  2855  3109 
10A  32  100  347  528  Converged  Converged 
10B  11  51  270  415  Converged  Converged 
10C  21  49  77  113  Converged  Converged 
11  -  41  118  173  850  975 
12  -  -  49  96  310  584 
13  -  -  13  34  96  198 
14  12  52  57  99  436  539 
15  -  -  42  -  68  174 
18  -  -  14  95  -  577 
21  204  401  920  2256  7003  11471 
24  44  194  770  1243  4520  7307 
27  29  79  236  -  2439  4986 
28  6  32  220  435  1431  3569 
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Figure 2-3.  Cumulative number of Phragmites clones >5 in diameter detected on aerial 
photography between 1933 and 1998 in the westernmost 1000 hectares of coastal marsh.  The 
lower timeline indicates major natural and anthropogenic impacts occurring in the Chenier plain 
during the same time period. 
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Figure 2-4.  Area (m2) of Phragmites clones over time since initial detection in 1968.  The inset 
graph depicts area of Phragmites clones over time that were initially detected in 1982.  Lines are 
curved segments connecting time points between measured areas (m2).  Time points for each 
measurement from 1968 clones include 1968, 1978, 1982, 1985 and 1995.  Time points for each 
measurement from the 1982 clones include 1982, 1985 and 1995.  No clones of Phragmites were 
identified on 1933 and 1955 photography. 
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Table 2-3.  Summary of colony growth rate estimates from the non-linear Malthusian 
equation and growth estimates calculated using the fixed effects modeling, both with  

associated standard errors.  The slope estimate is a measure of growth rate.   
Those denoted with * are not significantly different from zero. 

 
 



 

 Table 2-3. 

Clone Number and Starting Areas Nonlinear Regression Malthusian Exponential Growth Model 
with Iterations (Area = (Area)o exp(b1t)) 

Linear Regression (fixed effects, by 
colony) (log(area) = bo + b1t) 

Clone n 
 (n-1) 

Year Initially 
Observed 

Starting 
Area 

(Area)0 

Log  
(start area)

(b0) 

Slope Estimate  
(r-value) 

(b1t) 

Approx.  
S. E. 

Intercept 
Estimate 

(b0) 
S. E. Predicted 

Establishment

Slope 
Estimate 

(b1) 
S. E. Predicted 

Establishment 

1 2 1982 60.74 4.1066 0.1194 0.0132 4.00 0.4864 1946 0.1146 0.0379 1981 

4 3 1982 94.47 4.5483 0.1297 0.0035 4.49 0.0771 1948 0.1311 0.0074 1981 

5 2 1982 417.49 6.0343 0.1399 0.0006 6.03 0.0144 1939 0.1398 0.0012 1980 

6 4 1968 10.37 2.339 0.1070 0.0012 2.46 0.1045 1945 0.1036 0.0053 1971 

7 5 1968 41.34 3.7218 0.1364 0.003 3.99 0.2503 1940 0.1341 0.013 1973 

8.1 3 1968 63.66 4.1529 0.1601 0.0048 4.02 0.2974 1942 0.1624 0.0255 1969 

8.2 3 1968 46.20 3.8329 0.1618 0.0049 3.69 0.3065 1944 0.1635 0.0254 1969 

8.3 3 1968 17.42 2.8577 0.1556 0.0071 2.76 0.2973 1950 0.1588 0.0246 1969 

9 4 1978 33.32 3.5062 0.2027 0.0097 4.14 0.409 1958 0.1827 0.0333 1979 

10.1 3 1968 32.09 3.4685 0.1647 0.0049 3.33 0.3129 1947 0.1672 0.0259 1969 

10.2 3 1968 11.12 2.4084 0.2149 0.0057 2.25 0.4027 1957 0.2186 0.0333 1970 

10.3 3 1968 20.97 3.0432 0.0965 0.0029 3.00 0.0834 1936 0.0972 0.0069 1965 

11 4 1978 41.41 3.7236 0.1629 0.0053 3.96 0.1638 1954 0.1557 0.0133 1979 

12 3 1982 48.85 3.8887 0.1526 0.0038 3.99 0.1263 1955 0.1444 0.0121 1981 

13 3 1982 12.65 2.5378 0.1692 0.0049 2.76 0.2373 1965 0.1528 0.0228 1981 

14 5 1968 11.87 2.4737 0.1290 0.0015 2.47 0.1303 1948 0.1288 0.0068 1974 

15 2 1982 42.31 3.745 0.0767* 0.0201 3.67 0.5113 1930 0.0729* 0.0429 1977 

18 2 1982 14.30 2.6605 0.2312 0.0072 3.24 0.7199 1968 0.2035* 0.0767 1982 

21 5 1968 204.43 5.3202 0.1334 0.0011 5.04 0.248 1930 0.1411 0.0129 1974 

24 5 1968 43.67 3.7767 0.1711 0.0012 3.88 0.2402 1946 0.1721 0.0125 1974 

27 4 1968 28.98 3.3667 0.1700 0.0017 3.05 0.2616 1948 0.1763 0.0133 1974 

28 5 1968 6.18 1.8207 0.2103 0.0021 1.93 0.3956 1959 0.2103 0.0206 1975 
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Phragmites Expansion Rates: Nonlinear Expansion Model 

Most Phragmites clones increased in size over time (Figure 2-4).  Several clones 

increased exponentially after what appeared to be a period of persistence with little or no 

increase in area (lag in expansion); other clones increased gradually in size.   

The exponential model was fit to the data of each of the 21 clones (Table 2-3).  The 

intrinsic rate of increase for each clone was estimated using least squares (PROC NLIN, SAS 1999; 

Table 2-3).  The associated standard errors were very small, indicating a good fit of the model to 

the data.  The estimated intrinsic rate of increase in area of each of the 21 clones of Phragmites 

ranged from 0.0767 to 0.2312 yr-1 (Table 2-3).  The predicted spread of clones in the exponential 

model was initially slow, indistinguishable from 0 in the early stages of growth, but increasing 

over time and producing rapid increases in area during the most recent time interval for many 

clones (Figure 2-4). 

The exponential shape of the clone expansion curves (see Figure 2-4) and the absence of 

an asymptote (areas still growing in 1998) suggested that a log transformation of area would be 

appropriate for linear modeling.  The log transformation was successful in linearizing the 

relationship. 

 Fixed Effects Analysis 

A clone-specific analysis using a fixed effects model limits conclusions to only the 

measured clones in this study.  The significant time by clone interaction indicated by the analysis 

of covariance linear model suggested differing expansion rates for each clone (p < 0.0001).   

Separate regressions were fit for each clone for which there were at least 2 photographs 

beyond the starting time to.  The estimated slope was not significantly different from 0 for only 

two clones, 15 and 18 (Table 2-3).  The other estimated slopes for these linear regression models 
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(on the log scale) ranged from 0.097 to 0.210, indicating an increase in area of 10% to 21% per 

year for each clone.  Intercepts were included in the model to allow for variation in stand 

establishment at t = 0.  The estimated slopes (growth rate) for the nonlinear and linear models 

were similar (Table 2-3), and the small standard errors associated with each of the models 

suggest that exponential expansion rates with a nonzero starting point can be used to predict 

changes in clone size over time. 

 Random Effects Analysis 

The random effects model considers the observed clones to be a random sample from a 

potential population and thus gives one expansion estimate (intercept) and associated standard 

deviation.  There were significant differences between the initial areas (intercepts) and expansion 

rates (slopes) for the different clones observed in this study (intercepts, p < 0.001; slopes, p = 

0.001, SAS PROC MIXED, 1999).  The significance of these random effects was determined by 

likelihood ratio tests that iteratively deleted each effect and tested the fit of the model at each 

stage. 

The estimated intercept distribution (clone area) had a mean of 3.5 + 0.85 (s.e.) m2 and a 

standard deviation of 0.8471 on the transformed scale.  A 95% confidence interval for the mean 

of the log transformed starting areas for a population of Phragmites clones was 1.89 to 5.21.  The 

corresponding interval for the median observed starting area was 6.604 to 182.783.  Although 

this confidence interval is rather wide, it is representative of a population of starting areas and 

also includes any error encountered in the quality of the aerial photography. 

The estimated expansion rates of clones had a mean of 0.15 yr-1 and a standard deviation 

of 0.03 on the log transformed scale.  A 95% confidence interval for the expected change in the 

log(area) for 1 year was 0.1 to 0.21.  The predicted percent increase in area for 1 year for a 
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population of such clones ranged from 10.5% to 22.8%.  For 3 years, the minimum time between 

photo observations, the corresponding interval for the median increase was 35.1% to 85.1%. 

Phragmites Expansion Contrasts 

Both the non-linear and the linear procedures provided similar expansion estimates.  A 

regression relating both data sets yielded an r2 value of 0.95. 

Expansion rates were not different based on the age of Phragmites colonies (Figure 2-5).  

The non-linear analysis indicated no significant differences (p = 0.55) in expansion rates between 

clones first observed in 1968 (0.15 yr-1 ± 0.01), 1978 (0.18 yr-1 ± 0.02) or 1982 (0.15 yr-1 ± 0.02).  

There were also no significant differences (p = 0.46) in expansion rates based on observation 

dates in the linear analysis (1968 (0.16 yr-1 ± 0.01); 1978 (0.17 yr-1 ± 0.01); 1982 (0.14 yr-1 ± 

0.02); Figure 2-5). 

Phragmites clonal expansion was not different based on growing environment (Figure 2-

6).  For the non-linear analysis, there was no significant difference (p = 0.142) between clones 

adjacent to water in unmanaged areas (0.1286 yr-1 ± 0.0134), clones adjacent only to vegetation 

in unmanaged areas (0.1635 yr-1 ± 0.0122) and clones adjacent only to vegetation in managed 

areas (0.1712 yr-1 ± 0.0157).  However, when using the results from the linear analysis, a 

significant difference (p = 0.05) was found between clones adjacent to water in unmanaged areas 

(0.12 yr-1 ± 0.01) and clones in managed areas surrounded by vegetation (0.18 ± 0.01), yet no 

significant difference between those and colonies in unmanaged areas surrounded by vegetation 

(0.16 yr-1 ± 0.01, Figure 2-6). 

Prediction of Phragmites Establishment Dates: Fixed Effects Analysis 

The predicted establishment dates for the Phragmites clones estimated by the non-linear 

model ranged from 1930 to 1968, whereas the linear model gave establishment estimates ranging 



44 

 
 
 
 

 
Figure 2-5.  Estimate of expansion rates (yr-1) from linear modeling of Phragmites clones, based 
on establishment times analyzed using a Student t-test.  Means + standard errors are depicted by 
horizontal lines and vertical bars (p = 0.458). 
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Figure 2-6.  Intrinsic Growth Rate of Phragmites clones in managed areas completely 
surrounded by vegetation (M-vegetation), unmanaged areas surrounded by vegetation (U-
vegetation), and unmanaged areas adjacent to water (U-water) at Rockefeller Wildlife Refuge.  
Analyses performed using a Student t-test.  Means + standard errors are depicted by horizontal 
lines and vertical bars.  
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from 1965 to 1982 (Table 2-3).  Calibration of the non-linear model suggests that for a given 

clone, the time for predicted establishment using the estimates (value of zero log(area), assumes 

area = 1 m2 is noticeable on aerial photography) would be –bo/b1 (where bo and b1 are the 

estimates of earliest observed area and growth rate).  For example, colony 27, in the non-linear 

model, first observed in photos of 1968 would have an estimated starting time (–3.3667 / 0.1763 

= -19.1 years) in late 1948, and in the linear model would be the x-intercept at 1974.  Colony 21, 

also first observed in 1968, would have a non-linear estimated starting time (-5.3202 / 0.1411 = -

37.9 years) in early 1930 and 1974 for the linear x-intercept.  Each of the non-linear point 

estimates for establishment has an associated standard error that differs for each colony and is 

based on the number of observations of each colony on the aerial photography.  

Prediction of Phragmites Establishment Dates: Random Effects Analysis  

Those colonies initially observed in 1968 were used in the random coefficients model in 

an attempt to predict the average time at which that set of colonies may have become established.  

Prediction intervals for this set of colonies were centered at -19.5 years or mid 1949.   

Discussion 

Disturbances, both anthropogenic and natural, have been shown to exacerbate the 

dispersal, establishment and spread of invasive species (Elton 1946;1958; Platt 1975; Hobbs and 

Huenneke 1992; Horvitz et al. 1998).  For example, draining wetland areas through ditching may 

suppress water tables, giving species less tolerant to waterlogging stress the opportunity for 

invasion (Bart and Hartman 2000).  Drainage will have long lived effects on edaphic conditions, 

allowing these species to persist and spread.  Natural events, such as hurricanes, may spread seed 

or propagules to other locations where they did not exist before.  If conditions are favorable, 

populations establish, spread and ultimately change vegetative community structure.  Thus both 
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human induced and natural events may provide windows of opportunity for the establishment 

and expansion of invasive species.   

Widespread Landscape Scale Changes 

The marshes within the Louisiana Chenier Plain began forming about 3000-4000 years 

ago during periods when the Mississippi River followed a westerly course (Gould and McFarlan 

Jr. 1959; Gosselink et al. 1979).  Expansive mudflats were created with westward shifts of the 

Mississippi River causing large quantities of riverine sediments to be deposited on the gulf shore.  

At the end of a delta building sequence, the river shifted eastward and erosion reworked the gulf 

shoreline to form a beach ridge (Chenier) parallel to the shoreline, consisting of shell and sand, 

and typically higher elevation than the surrounding marshes.  The repetition of this cycle resulted 

in a series of shore-parallel ridges separated by inter-ridge marshes that comprise the Chenier 

Plain. 

The hydrology of this natural coastal system has been altered extensively (see timeline, 

Figure 2-3).  During the 1930’s, the Intracoastal Waterway connecting White and Grand Lake 

was completed.  This canal continued east and west, interrupting the north-south flow of fresh 

water and redirecting it east and west.  The installation of locks and impoundments throughout 

the watershed has reduced water flow, disrupting the natural drainage in these marshes (Gammill 

2002).  In addition, highway construction (LA Hwy 82 and 27) further impeded the north-south 

flow of fresh water.   

Within RWR, the formation of canals and impoundments exacerbated the hydrologic 

disconnection.  In 1944 the Humble Canal, the first oil exploration canal in the RWR, was 

excavated.  This also resulted in increased drainage of water from the interior portions of the 

refuge (Wicker and Endres 1995).  In 1954-55, the first impoundments were built in intermediate 
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(oligohaline) marsh areas using existing oil access canal spoil banks and stranded/remnant beach 

ridges through the refuge.  These impoundments were periodically drained and flooded to 

enhance production of waterfowl foods. 

Nichols (1959a) identified and measured 4 stranded beach ridges running roughly parallel 

to the shoreline in RWR.  These subsided ridges, which are 2-3 cm higher in elevation than the 

surrounding marsh, are not usually discernable by changes in vegetation.  Nichols did identify 

Phragmites occurring in the northern most portion of one of these ridges, which was situated 

within an intermediate marsh.  The next ridge, located 2.5 km to the south, was situated in a 

brackish marsh and was not, at that time, colonized by populations of Phragmites (Nichols 

1959b) 

The construction of the Intracoastal Waterway, creation of impoundments and canal 

excavation throughout the watershed most likely did not result in the invasion of Phragmites 

because it was not present in brackish marshes in either early surveys (O'Neil 1949; Nichols 

1959a) or on the early aerial photography.  However, the combination of these events likely 

lowered water levels relative to stranded/remnant beach ridges found in the interior brackish 

marshes south of the Chenier ridge.  The combination of a lowered water table in the interior 

portions of the marsh and the interruption of fresh water sheet flow from the north likely 

generates suitable conditions for the establishment of species such as Phragmites in areas with 

slightly higher elevation. 

Phragmites Dispersal 

Between 1955 and 1968, two major events occurred that may have provided a window of 

opportunity for the establishment of Phragmites.  In 1954-55, the first impoundments were built 

in intermediate marsh areas using existing oil access canal spoil banks and stranded/remnant 
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beach ridges through the refuge.  These impoundments were periodically drained and flooded to 

enhance production of waterfowl foods.  Some of the clones first apparent on the 1968 aerials are 

located inside these impoundments.  Not all of the clones that appear in the 1968 aerials, 

however, are located inside impoundments.  Some are located along an undisturbed 

stranded/remnant beach ridge at the western edge of RWR.  Establishment of these clones may 

have also occurred following Hurricane Audrey in 1957 (Figure 2-7).  The center of the eye of 

this large category IV hurricane crossed the Louisiana coastline about 100 km west of RWR, 

produced tidal surges of 3-4 m at RWR and winds of 120 km/hr.  The influx and egress of water 

was associated with large-scale movement of vegetation, possibly resulting in rhizome fragments 

being transported into the brackish marsh from the more inland intermediate marsh.  Regardless 

of the origin of Phragmites in impoundments or transport by the hurricane, clones present in 

1968 did not expand rapidly; these clones took at least a decade to initiate the more rapid growth 

that I documented in this study. 

Natural disturbances may influence the post-invasion dynamics of Phragmites spread.  

Prior field and greenhouse experiments indicate low rates of seedling emergence in populations 

of Phragmites at RWR (see Ekstam and Forseby 1999; Ekstam et al. 1999; Pellegrin and Hauber 

1999; Mauchamp et al. 2001).  We propose that post-invasion spread of Phragmites most likely 

arises through physical transport of rooted culms or rhizomes to new sites.  Plants arising from 

such fragments would be more resistant to increased salinities (Lissner and Schierup 1997) and 

could remain viable even through severe drought conditions (L. E. Stanton, personal 

observation).  In contrast, seedlings often are sensitive to harsh conditions and can take up to 2 

years to become successfully established (Haslam 1971).   
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Figure 2-7.  Size of Phragmites clones (m2) in year of initial appearance in aerial photography. 
Arrows denote major hurricanes that affected Rockefeller Wildlife Refuge.  Note the larger 
numbers of new clones observed 10 years after each storm event. 
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The results from our analysis suggest that establishment of Phragmites clones did not 

coincide with major storm events affecting RWR.  Table 2-3 lists the estimated establishment 

times for each individual colony using both the linear and non-linear data.  In addition, a 

prediction using the random effects analysis for colonies that first appeared on the 1968 

photographs did not coincide with a storm event, as suggested in Figure 2-7.  The 1968 colonies 

were predicted to have established in mid 1949, which was 8 years before Hurricane Audrey 

made landfall. 

Both the exponential and the linear models “bracket” establishment times for each of the 

Phragmites colonies in this study.  The exponential model did not accurately predict 

establishment times because it estimated establishment well before Nichols (1959a) and O’Neil 

(1949) conducted their studies and the 1955 aerial photography, none of which identify 

Phragmites in the study area (Table 2-3).  In contrast, the linear model often predicts Phragmites 

establishment after the clones had been identified on aerial photography (Table 2-3).  This 

disparity suggests that the rate of clonal spread has changed, such as a lag in clonal expansion 

after establishment, or the initial density of culms in establishing clones was too low for 

detection on the aerial photography.  Thus, these models do not have the resolution to 

incorporate changes in expansion rates and therefore yield incorrect establishment times.  As a 

result, the hypothesis that storm events may be responsible for the establishment of new 

Phragmites colonies cannot be discounted. 

Phragmites Expansion 

Historically, Phragmites has existed in North American marshes for thousands of years 

(Orson et al. 1987), yet the reasons for recent expansions in its range and increases in abundance 

within its historical range have not been delineated.  Rapid expansion of area occupied can be 
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expected if invasion is followed by dispersal to new areas not adjacent to existing clones (Moody 

and Mack 1988).  Phragmites is capable of dispersing new ramets (either clonal fragments or by 

seeds) far enough that clones are not likely to spread as a front, but rather as a saltatorial spread.  

Many smaller Phragmites clones can occupy a greater area as they expand than could one large 

clone (Mack 1985).  In addition, each independent clone has the capability to further distribute 

seed or clonal fragments to additional sites, thus increasing the overall rate of the invasion 

process. 

The occurrence of Phragmites clones has increased in relatively undisturbed interior 

portions of brackish marsh in southwest Louisiana over the last 50 years.  The clones examined 

in this study were, in most instances, unbounded by physical barriers such as levees or other 

changes in topography (six of the 22 colonies were adjacent to water).  There were no vegetation 

barriers such as shrubs or trees that prevented clone expansion (Havens et al. 2002).  Stands of 

Phragmites have become pervasive in many areas previously occupied by native short 

graminoids, typically comprised of a mixture of Spartina patens, Schoenoplectus robustus and 

Distichlis spicata.   

Phragmites is a dominant competitor, both above and belowground.  Phragmites has a 

distinct height advantage (culms 3-4 m) to capture more light than shorter graminoid species (<1 

m tall).  In addition, Phragmites has a deep well-developed rhizome network (>1 m depth) that 

can access different belowground resources (Burdick et al. 2001) and remain protected in the 

event of fire (Cross and Fleming 1989).  Furthermore, the extensive rhizome network is 

integrated, allowing translocation of resources among ramets (Amsberry et al. 2000).  These 

morphological and physiological characteristics, coupled with an extended growing season 

beginning in March and lasting through October, may result in accelerated expansion rates in 
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Louisiana marshes.  Thus, it seems likely that the spread of these isolated Phragmites clones will 

continue unchecked in interior marshes until they merge with other Phragmites clones, reach a 

physical barrier, or exhibit a reduction in growth due to environmental or biological changes. 

The densities of the culms in Phragmites clones are sparse initially.  When ground-

truthing was conducted in 1998, several small clones were observed and delineated with GPS.  

However, the low densities of the clones made efforts to locate them on the 1998 aerial 

photography unsuccessful.  It is likely that sparse clones are present even when no visual 

identification is made when using aerial photography.  It is not known how long clones remain 

sparse, or what densities are necessary to become observable in aerial photography.  A distinct 

lag phase was demonstrated by colonies first observed in 1968 and in 1982.  In both cases, the 

lag time between establishment and rapid increases in expansion are between 10 and 15 years 

(Figure 2-3).  Change in the rate of clonal spread might occur in brackish areas once the rhizome 

network becomes established and may be a partial explanation for the lag in growth seen in the 

colonies studied.  Burdick (2002) suggests that Phragmites rhizomes can utilize fresh water 

trapped beneath a lens of higher salinity water near the surface.  Higher salinities near the marsh 

surface may reduce clonal growth rates of establishing stands.  However, once deep rhizomes are 

produced, clonal expansion rates may increase due to improved nutrient absorption and water 

acquisition capacity.  

The growth form of Phragmites may facilitate its invasion into sub-optimal 

environments.  In previous studies, Phragmites establishment has been associated with 

disturbances that reduce harsh environmental conditions (Bart and Hartman 2000) or has 

occurred along a sharp environmental gradient (Amsberry et al. 2000).  In New England 

marshes, elevation gradients are horizontally compressed, creating sharp environmental 
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gradients.  Therefore, Phragmites establishment occurs in areas with optimum environmental 

conditions, and clonal integration between ramets facilitates invasion of less-optimum 

environments (Amsberry et al. 2000; Bart and Hartman 2000). However, in Gulf Coast marshes, 

changes in elevation along the coast are small, resulting in a gradual gradient between harsh and 

benign environmental conditions.  In such unbounded marshes, this same clonal integration 

appears to result in ever increasing rates of clonal expansion.  Losses of areas containing short 

graminoids to Phragmites are likely to accelerate over time, resulting in rapid takeover of a 

marsh once clones reach critical sizes. 

Phragmites invasions are prevalent in many coastal areas (Rice et al. 2000).  The post-

invasion expansion of Phragmites along the Mid-Atlantic Coast has been described using 

deterministic non-linear expansion models (Rice et al. 2000).  Bailey (1997) reported intrinsic 

rates of increase in sizes of clones in a Delaware low salinity marsh (0-10ppt) as 0.0024 yr-1 

between the years of 1979-1988 and 0.057 yr-1 between 1988 and 1993.  These rates of clonal 

expansion are less than rates ranging from 0.0160 yr-1 to 0.1175 yr-1 in a mesohaline marsh and 

0.1221 yr-1 to 0.2123 yr-1 in an oligohaline marsh found by Rice et. al (2000).  The intrinsic rates 

of increase found in this study ranged from 0.0767 to 0.2312 yr-1 in managed marshes with 

salinities between 7 and 15ppt and 20-42ppt in unmanaged areas, which fall within the upper 

range reported for Phragmites expansion in previous studies. 

Expansion Rates Based on Age and Environment 

For some clonal species, there is a decline in expansion rates as the genet ages (Cheplick 

1998).  Rice and others (2000) indicated that the intrinsic rate of increase in clones of 

Phragmites established prior to 1985 along the Mid-Atlantic coasts had decreased or stabilized in 

both fresh water and mesohaline marshes.  This may be due to Phragmites clones merging with 
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other clones or reaching a physical or environmental barrier.  In comparisons between different 

aged Phragmites clones in this study, there was no evidence to indicate that stand age had any 

effect on the intrinsic rate of increase (Figure 2-5).  Thus, we do not expect a decrease in outward 

expansion of Phragmites in these habitats unless environmental conditions become less 

favorable for growth or until a physical barrier is reached. 

Post-invasion spread of Phragmites is not affected by being in managed or unmanaged 

areas.  The expansion rates of Phragmites clones located in water level managed portions of 

Rockefeller Wildlife refuge were not greater than those in unmanaged areas and managed areas.  

Although clonal expansion rates were lowest for clones adjacent to water, this is most likely 

because expansion is retarded in submerged environments and the clones are only expanding in 

one direction (van der Valk 1994; Rea 1996).  

Conclusion 

Phragmites has become established and spreading throughout coastal areas of Louisiana.  

This establishment is most likely not a direct result of any single natural or anthropogenic 

disturbance, but rather a combination of compounding disturbances.  Once established, 

Phragmites does not appear to persist until a genetic shift releases competitive restraints or if 

environmental conditions improve.  Expansion rates are consistent from the time clones are 

detectable, many exhibiting exponential spread.  Thus, Phragmites is demonstrating the same 

characteristics as non-native invasive species.  Since unchecked growth occurs immediately once 

established, managers should begin control efforts as soon as an invasion is noticed. 

It is obvious that the brackish marsh of southwestern Louisiana is a favorable habitat for 

Phragmites.  Our data suggest that initial establishment occurred at least 70 years ago.  Post-

invasion spread is occurring rapidly regardless of whether marsh management techniques are 
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practiced.  However, the mechanism by which new clones of Phragmites establish remains 

unclear.  What seems likely is that Phragmites expansion and spread will continue unchecked 

until harsh environmental conditions overcome the species tolerance levels and surpass the 

benefits of clonal integration, competition with woody species impedes growth or a physical 

barrier is reached.  This will occur at the expense of the indigenous short graminoids that have 

historically occupied these marshes and will ultimately change the nature of coastal Louisiana 

marshes.   
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CHAPTER 3  
THE EFFECT OF DISTURBANCE AND NUTRIENT INTERACTIONS ON 

COMMUNITY INVASIBILITY AND THE ESTABLISHMENT OF PHRAGMITES 
AUSTRALIS IN A BRACKISH MARSH IN SOUTHWESTERN LOUISIANA 

 

Introduction 

As biological invasions have become a common phenomenon throughout the world, 

ecologists have intensified efforts to understand and predict why natural communities are 

susceptible to invasion (Elton 1958, Crawley 1987, Richardson and Bond 1991, Robinson et al. 

1995, Wiser et al. 1998, Stohlgren et al. 2003).  With the understanding that biological invasions 

will continue to intensify in response to increasing human populations and global climate change 

(Thompson et al. 2001), many ecological investigations have focused on identifying specific 

characteristics of communities vulnerable to invasion and the invading species (Elton 1958, 

Crawley 1987, Tilman 1999, Naeem et al. 2000, Prieur-Richard and Lavorel 2000, Hector et al. 

2001, Kennedy et al. 2002, Prieur-Richard et al. 2002).   

Although the susceptibility of a natural community to invasion has most commonly been 

correlated with species richness (Elton 1958, Tilman 1999, Naeem et al. 2000, Hector et al. 

2001, Kennedy et al. 2002, Pennings et al. 2002), inconclusive results have caused a shift from 

an emphasis on richness/invasibility relationships to examinations of landscape scale changes in 

disturbance regimes and availability of resources as determinates of invasibility (Orians 1984, 

Heywood 1989, Schierenbeck et al. 1994, Burke and Grime 1996, Higgins and Richardson 1998, 

Horvitz et al. 1998, Wiser et al. 1998, Levine and D'Antonio 1999, Smith and Knapp 1999, 

Hector et al. 2001, Stohlgren et al. 2003).  For example, in some communities disturbances such 

as  fire and grazing may influence an invaders success directly by altering resource availability 

(Pickett and White 1985, Burke and Grime 1996) or indirectly by changing biotic interactions 
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(competition) and subsequently community structure (Richardson and Bond 1991, Hobbs and 

Huenneke 1992).  Furthermore, nutrient enrichment from agricultural and urban areas can favor 

fast growing exotic species, effectively creating a shift in community structure and ultimately 

changing ecosystem functions (Burke and Grime 1996, Hector et al. 2001).  Yet when 

communities are subject to both disturbance and eutrophication, the mechanisms directly and 

indirectly affecting community stability and invasibility are often difficult to separate. 

Coastal wetlands have become more vulnerable to invasive species in the last 50 years 

(Thompson et al. 1987, Chambers et al. 1998, Galatowitsch et al. 1999, Bart and Hartman 2000, 

Stohlgren et al. 2003).  Even though wetland communities are disturbed naturally by wrack 

deposition (Bertness and Ellison 1987, Brewer and Bertness 1996, Minchinton 2002), periodic 

fires (Hackney and de la Cruz 1981, Ceulean and Engstrom 1993, Nyman and Chabreck 1995) 

and intense herbivory events (Taylor and Grace 1995, Gough and Grace 1998), it has been 

suggested that disturbances resulting from increased urbanization and development in coastal 

areas have surpassed that which wetlands are typically subject and may be responsible for the 

increased prevalence of invasive species (Wilcox 1995, Chambers et al. 1998, Chambers et al. 

1999, Detenbeck et al. 1999, Ekstam et al. 1999, McKee and Baldwin 1999).  Furthermore, 

coastal wetlands occupy fringing and estuarine landscape positions that continue to receive 

elevated nutrients via rivers, watersheds and drainage basins (Morris 1991, Gale et al. 1994, 

Rabalais 2002, Rabalais et al. 2002, Turner and Rabalais 2003), which could further enhance 

community vulnerability.   

However, invading species can only become established if they are pre-adapted to 

existing environmental conditions of the invaded community (Wilson 1961, Ewel 1986).  In 

addition to the natural and anthropogenic disturbances to which wetlands are exposed, these 
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habitats are subject to constant environmental stressors such as waterlogging (Jones 1970, 

Gleason and Zieman 1981, Mendelssohn and McKee 1992, Bornette and Amoros 1996), 

elevated salinities (Parrondo et al. 1978, Morris 1984, Mendelssohn and McKee 1992), sulfides 

(Havill et al. 1985, Patterson and Mendelssohn 1991, McKee et al. 2004) as well as root oxygen 

deficiency (Mendelssohn et al. 1981, Howes and Teal 1994).  Thus, the successful wetland 

invasive species must be physiologically adapted to rather stressful conditions independent of the 

disturbances that can alter resource availability or provide an opportunity for establishment.  

As urbanization of the coastal zone continues, higher levels of disturbance and increased 

nutrient loading may provide windows of opportunity for the establishment and spread of 

invasive species in coastal plant communities.  Marsh plant recovery and resulting zonation 

patterns have been examined after small-scale disturbances (Bertness and Ellison 1987, Hartman 

1988, Shumway and Bertness 1994) and in response to nutrient enrichment (Levine et al. 1998, 

Pennings et al. 2003).  However, the effects of disturbance and nutrient enrichment on the 

successful establishment of an invading species and on how these factors control community 

invasibility have not received scientific scrutiny.   

Hence, I have investigated the mechanisms controlling community invasibility of a 

brackish coastal marsh by the common reed, Phragmites australis (hereafter referred to as 

Phragmites), in the Northern Gulf of Mexico.  Although largely considered a native species 

(Neiring  and Warren 1980, Orson 1987), an invasive non-native strain of Phragmites has been 

identified along the eastern seaboard of the U.S. and is known to be responsible for the observed 

spread in those areas (Saltonstall 2002).  Although it isn’t known if these Northern Gulf Coast 

populations are of that non-native strain, it has been identified along the Mississippi River Delta 

and could possibly have spread to other areas of coastal Louisiana (Saltonstall 2003).  
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Phragmites has become invasive in many freshwater, tidal brackish and salt marsh communities 

along the Atlantic and Gulf Coasts of the United States over the last 75 years, forming large 

monospecific stands in habitats where it had not occurred previously (Meyerson et al. 2000).   

Although coastal marshes are subject to nutrient enrichment and disturbance, it remains 

unknown if these events increase susceptibility to Phragmites invasion.  Therefore, I addressed 

several questions related to brackish marsh invasibility in this study:  (1) How does the intensity 

of disturbance influence natural recruitment into a tidal wetland?  (2) Is the invasibility of a 

natural community enhanced in non-lethally and lethally disturbed areas when an invasive 

species is purposefully introduced?  (3) Furthermore, is invasibility promoted by nutrient 

enrichment in conjunction with both non-lethal and lethal disturbances?  And (4) are disturbed 

areas more susceptible to establishment by seedlings or rhizome fragments?  To answer these 

research questions, I tested the invasibility of a South Louisiana brackish marsh by manipulating 

both nutrient levels and disturbance regimes in conjunction with purposeful introductions of 

Phragmites seed and rhizome material.  My results show that the natural marsh community 

quickly recovered from disturbance treatments and responded positively to fertilization.  

Although no seedlings emerged, one third of the Phragmites plants introduced to undisturbed 

and disturbed plots in this study remained viable, even during two record setting drought 

seasons.  This study demonstrates that Phragmites has the potential for active growth and spread 

once environmental conditions improve, and that brackish marshes are likely susceptible to 

Phragmites invasion. 
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Methods 

Study Site  

Rockefeller Wildlife Refuge (29°55' N 92°30' W; hereafter RWR) lies within the 

southeastern portion of the Chenier Plain Region of coastal Louisiana (Cameron Parish, Figure 

3-1).  It is bordered on the south by the Gulf of Mexico, on the north by the Grand Chenier Ridge 

complex, and contains about 32,000 hectares.  Present-day RWR was purchased by the 

Rockefeller foundation in 1914, and subsequently deeded to the state of Louisiana in 1920 under 

the mandate to “preserve, maintain, and improve, whenever practical, the refuge lands in 

perpetuity”.  The majority of the refuge is actively managed through the use of water control 

structures to maximize germination of annual plants important as food for waterfowl (Wicker et 

al. 1983).   

The study site is located in a 1000-hectare portion of brackish marsh on the western 

border of the refuge.  This marsh is bounded to the south by the Gulf of Mexico, and the majority 

of this area has remained unmanaged since the inception of the refuge.  It is comprised of 

Spartina patens (hereafter Spartina) and Distichlis spicata (hereafter Distichlis), with sparse 

inclusions of Schoenoplectus robustus (hereafter Schoenoplectus) and Juncus roemerianus.  

Spartina alterniflora is also present, but is restricted to areas immediately adjacent to water 

bodies (Nichols 1959).  Although discreet populations of Phragmites have become established 

within this area, this experiment was conducted in an area where Phragmites has not invaded.   

Experimental Design 

Treatments were arranged in a split-plot design in strips with the main factors being level 

of disturbance (control, non-lethal, and lethal) and fertilization (ambient and fertilized).  Blocks 

(n = 5) were 21 m in length and 6 m in width, with 2 m separating each treatment combination.
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Figure 3-1:  The location of Rockefeller Wildlife Refuge in coastal Louisiana, and the 
experimental design used in this study.  The refuge lies in southwestern Louisiana on the border 
between Cameron and Vermillion Parishes and borders the Gulf of Mexico.  The study design is 
a split-plot in strips with main treatment factors being disturbance (undisturbed, non-lethal and 
lethal) and nutrient additions (fertilized and ambient).  Within each treatment combination is 
propagule addition (control, seed and rhizome) to test Phragmites establishment under different 
main treatment conditions.  This figure depicts one block of five total. 
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Experimental plots (1 m2) were manipulated at two different levels to mimic natural 

disturbances that commonly occur in coastal marsh ecosystems (fire/grazing and burial by 

wrack- McKee and Baldwin 1999).  Undisturbed, or control plots, were not modified, while plots 

that mimicked a fire/grazing disturbance (non-lethal) were mechanically clipped with a weed 

trimmer to remove aboveground vegetation.  To imitate complete plant dieback (lethal 

disturbance), such as that occurring after severe burial by vegetative wrack or other debris, one 

third of the experimental plots were treated repeatedly with a short-lived systemic herbicide 

(Roundup®, Monsanto).  Once aboveground plant material died, remaining standing dead 

biomass was mechanically clipped using a weed-trimmer.  Additional clipped plant material 

from non-lethally disturbed plots was added to create a uniform wrack depth of 15 cm across the 

entire plot.  Fertilized plots received a total of 500 Kg N ha-1 y-1 applied in three equal portions 

once every 4 months and two weeks prior to sampling (Mendelssohn 1979).  Fertilization 

treatments began in May 1999. 

To determine how dispersal mechanism (seed or rhizomes) would favor Phragmites 

establishment, three 1 m2 plots, spaced 1 m apart were established within each treatment 

combination (Figure 3-1).  Plots receiving seed had approximately 20 panicles from nearby 

Phragmites populations evenly distributed within the plot and anchored in place with 2.5 cm 

monofilament mesh.  Those plots receiving live Phragmites rhizome material received 1 sod of 

Phragmites, standardized to approximately 20 cm in diameter and 30 cm deep.  Sods were 

collected from nearby populations of Phragmites.  Each culm was clipped to ground level and 

the remaining sod with rhizomes was placed in the center of the 1 m2 plot and anchored with 

plastic coated aluminum wire to prevent movement.  The third plot within each treatment 

combination was left unplanted to measure natural recruitment.  A total of 5 blocks of each 
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treatment combination was created with each disturbance/nutrient arrangement containing three 

plots for propagule additions (seed, rhizome and control).  Both main treatments (disturbance 

and fertilization) and propagule types were assigned randomly within each block. 

Vegetative Measurements 

Species composition and cover were measured every 4 months (5 times over the course 

of the study) within each plot using a 0.25 m2 quadrat divided into 100 sections to obtain a 

nondestructive measure of vegetative success.  All measurements were averaged to obtain 

overall cover and compared by each disturbance/nutrient combination.  At the conclusion of the 

experiment (November 2000), all aboveground vegetation within a 0.5 m2 area in the center of 

each plot was clipped at ground level and sorted to species.  Once sorted, 6 stems of both S. 

patens and D. spicata were randomly selected and the length measured.  All plant material was 

then dried to constant weight at 70 ºC and weighed.   

At the conclusion of this experiment, all Phragmites plants were collected by the 

complete removal of all above and belowground material.  Rhizomes were excavated, collected 

and tested with a tetrazolium assay to determine viability (Parker 1953, Steponkus and Lanphear 

1967).   

Environmental Measurements 

To ascertain soil oxidation status within each disturbance/nutrient combination, Eh 

(redox potential) measurements were taken in the field within the upper one to two cm of soil (n 

= 3; hereafter referred to as surface Eh) and at a depth of 15 cm (n = 3; hereafter referred to as 

depth Eh).  Measurements were made using a calomel reference electrode, bright platinum 

electrodes and a portable pH-mV meter.  Each reading was standardized to a standard hydrogen 

electrode by adding 245 mV to each reading (Faulkner et al. 1989).  Soils were classified as 
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aerated (> 300 mV), moderately reduced (100 to 300 mV), reduced (-100 to 100 mV) and 

strongly reduced (< -100 mV), following Patrick’s (1980) classification.  Eh readings were not 

corrected for pH. 

Interstitial sulfide and ammonium concentrations, salinity, and pH were measured within 

each disturbance/nutrient combination.  Sediment cores were taken 3 times annually for 22 

months to a depth of ~15 cm using an aluminum corer 6 cm in diameter.  Soil was extruded into 

500 ml centrifuge tubes and sealed.  To ensure an anaerobic environment, the samples were 

immediately purged with nitrogen gas and placed on ice for transport to the laboratory.  The 

samples were then centrifuged at 10,000 g at 4 ºC for ten minutes.  Immediately after opening 

each tube, an aliquot of the supernatant was added to an antioxidant solution (NaOH, ascorbic 

acid, sodium salycilate) and analyzed for total soluble sulfide concentration (Sulfide Electrode, 

Lazar Research Laboratories, Los Angeles, CA).  Another unfiltered 10 ml aliquot of supernatant 

was set aside to measure salinity and pH.  Salinity was measured with a handheld field 

refractometer and pH with an Altex Model 3560 Digital pH meter and a Corning General 

Purpose Combination Electrode.  A final 10 ml aliquot of supernatant was filtered through a 0.45 

micron Millipore syringe filter and frozen for NH4-N analysis using the Colorimetric, Automated 

Phenate Method (U.S. Environmental Protection Agency 1979).   

Long term trend in rainfall patterns were also examined and annual precipitation data 

were collected from the meteorological station located at The Rockefeller Wildlife Refuge from 

1965 to present (Louisiana Climatic Survey, LSU). 

Statistical Analysis 

Both biomass and stem length data were analyzed using a split-plot in strips design with 

disturbance (undisturbed, non-lethal and lethal disturbances) and fertilization (fertilized and 
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ambient) as main factors and propagule introduction (I-rhizome, I-control) as the sub-factor 

(Figure 3-1).  Introduced seed plots (I-S) were omitted because no Phragmites seedlings emerged 

in these treatments.  Environmental variables were also analyzed using the split-split design, but 

with repeated measures over 5 sample periods (June 1999, September 1999, January 2000, June 

2000 and September 2000).  Environmental measurements were only taken within main 

treatment combinations (disturbance and nutrient) and were not distinguished by propagule 

introductions.  Biomass and environmental data were normalized using a square root 

transformation while stem lengths were normalized using a log transformation.  These data were 

then analyzed using the PROC MIXED procedure of the SAS statistical package (Institute 2003).  

All differences noted in results are significant unless otherwise noted. 

Cover measurements were analyzed for each main treatment and sub-factor combination 

using the PROC MIXED procedure of the SAS statistical package (SAS Institute 2003) with sample 

date as a repeated measure.  Comparisons between cover estimates for each species were not 

independent from one another; as such, a Bonferroni connected LSD was used to compare 

between groups of data.  Five groups, Phragmites, Distichlis, Spartina, Schoenoplectus and 

cumulative cover, were tested.  The initial alpha level of 0.05 was divided by the number of 

contrasts conducted resulting in an alpha level of 0.01.  Although some statistical differences 

might be overlooked, this lowers the chance of making a Type I error (Moltuski 1995).  

Phragmites was only found in study plots receiving rhizomes and therefore was not analyzed by 

propagule type or higher order interactions containing propagule type.  All differences are 

significant unless otherwise noted. 

 

 



 

71 

Results 

Phragmites biomass and cover measurements were greatest in non-lethally disturbed 

plots, yet was unaffected by elevated nutrients.  In contrast, the natural plant community 

responded strongly to both disturbance and nutrient enrichment.  Spartina patens and Distichlis 

spicata biomass was 41 and 10 times, respectively, that produced by Phragmites in unfertilized 

non-lethally disturbed treatments.  In fertilized non-lethal treatments, S. patens and D. spicata 

produced 80 and 30 times, respectively, the biomass produced by Phragmites.  At the end of the 

experiment, more than 30% of Phragmites plants survived in undisturbed and non-lethally 

disturbed treatments even though severe drought conditions (Figure 3-2, (McKee et al. 2004).  

Although nutrient enrichment increased interstitial ammonium concentrations, the other 

environmental variables were not affected by nutrient enrichment or disturbance.  The muted 

response of environmental variables was most likely a result of drought conditions. 

Vegetation Response 

 Percent Vegetative Cover 

Overall, Spartina and Distichlis were the dominant vegetation in this brackish marsh, 

with a combined percent cover of approximately 75% (Figure 3-3(b) and (c)).  Schoenoplectus is 

a minor component of this vegetative community with cover values less than 5% (Figure 3-3(d)).  

Phragmites was not present initially, but introduced sods quickly grew culms that comprised 5% 

of the total community over the duration of the experiment (Figure 3-3(a)).  

 COVER RESPONSE OVER TIME 

Phragmites and Distichlis cover changed over time (Table 3-1).  Since introduced 

Phragmites culms were clipped to ground level, initial Phragmites cover was zero (Figure 3-

3(a)).  Culms immediately grew to almost 6% maximum cover in September 1999, but steadily
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Figure 3-2:  Annual rainfall recorded at Rockefeller Wildlife Refuge, Cameron Parish, 
Louisiana, for the years 1965 to 2004.  The regression was calculated with 1999 and 2000 
removed, thus reflecting typical rainfall patterns.  The 2004 data is marked with an asterisk (*) 
and shows cumulative rainfall from January through October only.  Rainfall is expressed in cm.  
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Figure 3-3:  Average percent cover of Phragmites australis, Distichlis spicata, Spartina patens, 
Schoenoplectus robustus and cumulative cover by sample date (June 1999, Sept 1999, January 
2000, June 2000 and Sept 2000).  Cover is expressed in percent present in the 0.25 m2 center of 
each experimental plot.  Measurements are averaged over disturbance, nutrient and propagule 
introduction.  Error bars represent standard error and bars that share letters are not significantly 
different. 
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Table 3-1. ANOVA table of percent cover analyzed using PROC MIXED with time as a repeated measure.  Comparisons made within this 
group were not independent of one another; as such, a Bonferroni connected LSD was used to compare between groups of data.  Five 
groups, Phragmites, Distichlis, Spartina, Schoenoplectus and cumulative cover, were tested.  The initial alpha level of 0.05 was 
divided by the number of contrasts being conducted resulting in an alpha level of 0.01.  Phragmites was only found in plots receiving 
rhizome material, therefore the effect of propagule type was not tested for Phragmites.  Bold indicate significance at α = 0.01. 
 

Cover Phragmites Distichlis Spartina Schoenoplectus Cumulative Cover 

Source df F P F P F P F P F P 

Time (T) 4 6.93 0.0003 5.59 0.0002 37.7 <0.0001 71.01 <0.0001 7386.21 <0.0001 

Nutrient (N) 1 1.76 0.1877 0.21 0.6496 8.19 0.0045 11.12 0.001 23.05 <0.0001 

T x N 4 1.86 0.1413 2.75 0.0285 2.58 0.0376 2.57 0.038 1.1 0.3551 

Disturbance (D) 2 22.47 <0.0001 162.49 <0.0001 17 <0.0001 32.38 <0.0001 2593.04 <0.0001 

T x D 8 0.2 0.9755 2.55 0.0202 20.62 <0.0001 6.8 <0.0001 1590.26 <0.0001 

N x D 2 0.45 0.6366 2.06 0.1287 1.43 0.2402 0.23 0.7981 0.18 0.8314 

T x N x D 8 0.8 0.5726 0.73 0.6224 1.46 0.1898 2.11 0.0525 1.17 0.3136 

Propagule (P) 2 -- -- 6.06 0.0026 1.73 0.1781 2.71 0.0681 7.55 0.0006 

T x P 8 -- -- 1.06 0.3936 1.15 0.3285 1.6 0.1247 2.51 0.0115 

N x P 2 -- -- 0.14 0.8724 2.17 0.1156 0.46 0.6321 2.92 0.0552 

T x N x P 8 -- -- 0.18 0.9937 0.47 0.8772 0.74 0.6602 1.13 0.3442 

D x P 4 -- -- 0.83 0.5042 0.91 0.4586 0.78 0.5368 8.5 <0.0001 

T x D x P 16 -- -- 0.58 0.8593 0.83 0.6188 0.66 0.7912 3.08 <0.0001 

N x D x P 4 -- -- 0.02 0.9988 2.25 0.0639 0.96 0.4314 2.03 0.0894 

T x N x D x P 16 -- -- 0.58 0.8596 0.95 0.5015 0.34 0.9819 0.88 0.5958 
Note: Block was tested as a random effect. 
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decreased over the course of the experiment with the lowest cover in September 2000 (Table 3-

1).  Although Distichlis cover changed between sample dates, these changes did not demonstrate 

a clear trend (Figure 3-3(b)).  Distichlis cover was greatest in June 2000 and lowest in both 

January and September 2000.  Cover values in June and September 1999 were not different from 

any other cover value.  

However, for Spartina and Schoenoplectus, the response in cover over time was 

dependent on the level of disturbance (Table 3-1).  Spartina cover steadily increased over the 

course of the experiment (Figure 3-3(c)), while Schoenoplectus cover steadily decreased (Figure 

3-3(d)).  The change in cumulative cover over time was also dependent on disturbance and 

propagule introduction (Table 3-1).  Even though, as species recovered from disturbance and 

responded to fertilization, total cumulative cover increased (Figures 3-3(e)). 

 RESPONSE TO DISTURBANCE 

 All species reflected a change in cover in response to level of disturbance (Table 3-1).  

Both Phragmites and Distichlis had higher cover in non-lethally disturbed plots than in 

undisturbed control plots (Figures 3-4.1(a) and 3-4.2(a)), and cover in control plots and non-

lethally disturbed plots were higher than in lethally disturbed plots.   

The response of both Spartina and Schoenoplectus cover to level of disturbance was also 

dependent upon sample date (Table 3-1).  Spartina had higher percent cover in undisturbed plots 

and the lowest cover in non-lethally disturbed plots (Figure 3-4.3(a)) and Schoenoplectus had 

higher cover in non-lethally disturbed plots (3-4.4(a)).  The response of cumulative cover to 

disturbance was also dependent upon both time and propagule introduction (Table 3-1).  

Cumulative cover was greatest in undisturbed and non-lethally disturbed plots when compared to 

lethally disturbed plots (Figure 3-4.6(a)). 
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Figure 3-4:  Average percent cover of Phragmites australis, Distichlis spicata, Spartina 
patens, Schoenoplectus robustus and cumulative cover within (a) disturbance (control, 
non-lethal and lethal) and (b) nutrient (fertilized and ambient) treatment.  Cover is 
expressed in percent present in the 0.25 m2 center of each experimental plot.  
Measurements are averaged over five sampling dates.  Error bars represent standard error 
and bars that share letters are not significantly different. 
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RESPONSE TO NUTRIENTS 

Spartina, Schoenoplectus and cumulative cover changed in response to nutrient additions 

(Table 3-1).  Both Spartina and cumulative cover increased under fertilized conditions (Figures 

3-4.3(b) and 3-4.6(b)) while Schoenoplectus decreased under elevated nutrient conditions 

(Figures 3-4.4(b) and 3-4.5(b)).  In contrast, fertilization had no effect on either Phragmites or 

Distichlis cover (Figures 3-4.1(b) and 3-4.2(b)).  

 PERCENT COVER BY SAMPLE DATE AND DISTURBANCE 

Although the initial cover for non-lethally and lethally disturbed plots was zero, most 

species re-colonized within three months (Figure 3-5).  The response of Spartina and 

Schoenoplectus cover was dependent on both sample date and level of disturbance (Table 3-1).  

Although initial Spartina cover was zero in lethally disturbed plots, it increased even above 

cover in undisturbed control plots and in non-lethally disturbed plots on the last two sample dates 

(Figure 3-5(c)).  Conversely, Schoenoplectus cover in both non-lethally and lethally disturbed 

plots responded immediately to disturbances with a two-fold increase in cover when compared to 

undisturbed plots.  In contrast, Schoenoplectus cover in undisturbed plots steadily decreased over 

the course of the study (Figure 3-5(d)).  Even with the immediate increase, Schoenoplectus cover 

in disturbed plots sharply decreased, ultimately matching percent cover in undisturbed plots on 

the last two sample dates.   

Over all, cumulative cover increased over time as species recovered from initial 

disturbances (Figure 3-5(e)).  However, the response of cumulative cover to disturbance over 

time was also dependent on propagule introduction (Table 3-1). 
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Figure 3-5:  Percent cover of Phragmites australis, Distichlis spicata, Spartina patens, 
Schoenoplectus robustus and cumulative cover within each disturbance (control, non-
lethal and lethal) on each sample date.  Cover is expressed in percent present in the 0.25 
m2 center of each experimental plot and error bars represent standard error. 
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PERCENT COVER AS AFFECTED BY PHRAGMITES INTRODUCTION 

The physical presence of sod occupied space that was normally vegetated, thus reducing 

cover for certain measurements.  Introducing Phragmites sods reduced Distichlis cover when 

compared to control plots (Table 3-1; Figure 3-6.1(a)).  Cumulative percent cover was also 

affected by a propagule introduction (Table 3-1, Figure 3-6.1(b)) but this response was 

dependent on level of disturbance (Table 3-1).  Cumulative percent cover was less in undisturbed 

plots receiving introduced Phragmites sods when compared to undisturbed plots receiving seed 

(I-S) or undisturbed plots receiving no propagules (Figure 3-6.2).   

However, the combined effects of propagule introduction and level of disturbance on 

cumulative percent cover was also dependent on the change in vegetative cover over time (T x D 

x P; Table 1).  In June 1999, Phragmites sods reduced cumulative cover in undisturbed plots, 

while both non-lethal and lethal disturbances resulted in 0% cover in disturbed plots (Figure 3-

6.3).  In September 1999 and January 2000, the presence of Phragmites sods was not nearly as 

evident as the reduction in cover associated with lethally disturbed treatments.  Cumulative cover 

in June and September 2000 were not different regardless of disturbance or propagule 

introduction.  It appears the initial reduction of cumulative cover in plots receiving Phragmites 

sods was eventually masked by growth of vegetation in control plots around rhizomes and the re-

growth of vegetation in disturbance plots.   

 Biomass 

Phragmites biomass was greater in non-lethally disturbed plots when compared to 

lethally disturbed plots (Table 3-2; Figure 3-7.1(a)).  Biomass in undisturbed plots was not 

different in either lethally disturbed or undisturbed plots.  In addition, there was no fertilization 

effect or interaction between fertilization and disturbance on Phragmites biomass (Table 3-2;
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Figure 3-6:  Percent cover of Distichlis (3-6.1(a)) and cumulative cover (3-6.1(b)) by propagule 
introduction.  Figure 3-6.2 demonstrates the interaction between propagule introduction and 
disturbance on cumulative cover.  Figure 3-6.3 depicts the three-way interaction between sample 
date, level of disturbance and propagule introduction on cumulative cover.  In all figures, error 
bars represent standard error and where present, bars that share letters are not significantly 
different. 

 
 

(2) - Cumulative percent cover 

Propagule Introduction
I - Control I - Rhizome I - Seed

Pe
rc

en
t C

ov
er

 (%
)

0

20

40

60

80

100

120
Control 
Non-lethal 
Lethal 

Disturbance x Propagule
P < 0.0001
F = 8.5
n = 25

A A

B
BC C BC

D D D

(3) - Cumulative Percent Cover

June 99
I-C I-R I-S I-C I-R I-S I-C I-R I-S I-C I-R I-S I-C I-R I-S

Pe
rc

en
t C

ov
er

 (%
)

0

20

40

60

80

100

120
Control
Non-lethal
Lethal

Sept 99 Jan 2000 June 2000 Sept 2000

T x D x P
P < 0.0001
F = 3.08
n = 10

0%
0% 0%

0%
0%

0%

Propagule Introduction

I-C I-R I-S I-C I-R I-S

Pe
rc

en
t C

ov
er

 (0
.2

5m
2 )

0

20

40

60

80

100

120
A - Distichlis
P = 0.0026
F = 6.06
n = 150

BA AB

A
B

A

B - Cumulative Cover
P = 0.0006

F = 7.55
n = 150

(1)



 

 

81 

 
 
 
 
 
 
 
Table 3-2.  ANOVA table of vegetative biomass analyzed using PROC MIXED.  Bold indicates statistical significance at α 
= 0.05.  Phragmites was only found in study plots receiving rhizomes and therefore was not analyzed by propagule 
type or higher order interactions containing propagule. 

 
Biomass Phragmites Distichlis Spartina Schoenoplectus Cumulative 

Source df F P F P F P F P F P 

Disturbance (D) 2 3.88 0.0376 47.88 <0.0001 5.54 0.0068 7.56 0.0015 23.03 <0.0001 
Nutrient (N) 1 1.08 0.3114 16.27 0.0002 13.12 0.0007 0.86 0.3596 77.07 <0.0001 
D x N 2 1.60 0.2271 1.7 0.1944 0.79 0.4616 3.96 0.0263 1.77 0.1914 
Propagule (P) 1 -- -- 0.36 0.5535 3.03 0.0882 1.43 0.2385 2.78 0.1083 
N x P 1 -- -- 0.84 0.3637 0.19 0.6663 4.85 0.033 0.3 0.5907 
D x P 2 -- -- 0.06 0.9465 0.24 0.7873 0.57 0.5681 0.38 0.6866 
N x D x P 2 -- -- 0.02 0.9781 0.59 0.5559 0.02 0.9808 1.61 0.2201 
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Figure 3-7.  Graphs demonstrating the main effects of disturbance and nutrient additions on 
biomass.  Graphs 1-3 and 6 reflect biomass measurements tested by (a) disturbance (control, 
non-lethal and lethal) and (b) nutrient (fertilized and ambient) for Phragmites, Spartina patens, 
Distichlis spicata and cumulative biomass.  Graphs 4 and 5 reflect the interactions between 
nutrient x disturbance and nutrient x propagule introduction for Schoenoplectus robustus.  All 
biomass measures are expressed as grams dry weight m-2 and error bars reflect SE.  Bars that 
share letters are not significantly different. 
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Figure 3-7.1(b)).  Since Phragmites was only present in plots receiving rhizome material, 

biomass was not analyzed by propagule treatment (Table 3-2). 

Distichlis biomass in fertilized treatments was greater than biomass in unfertilized plots 

(Table 3-2, Figure 3-7.2(b)).  In addition, Distichlis biomass was not adversely affected by non-

lethal disturbance and was not different than undisturbed plots (Table 3-2; Figure 3-7.2(a)).  In 

fact, Distichlis biomass from both undisturbed and non-lethally disturbed plots was three-fold 

higher than in lethally disturbed plots (Table 3-2, Figure 3-7.2(a)).  There was no interaction 

between nutrient additions and disturbance for Distichlis biomass (Table 3-2). 

Spartina also yielded more biomass in both undisturbed plots and in fertilized plots 

(Table 3-2).  Biomass in fertilized plots was nearly 25% greater that that in unfertilized plots 

(Figure 3-7.3(b)).  However, Spartina recovery in non-lethally disturbed plots did not respond as 

quickly as Distichlis.  Spartina biomass in both non-lethally and lethally disturbed plots was a 

third less than in undisturbed plots (Figure 3-7.3(a)).  There was no interaction between nutrient 

additions and disturbance for Spartina biomass (Table 3-2). 

Although Schoenoplectus biomass was affected by disturbance, this response was 

dependent on fertilization and also with propagule introduction (Table 3-2; N x D; N x P).  When 

averaged over disturbance, Schoenoplectus biomass was unaffected by introducing Phragmites 

rhizomes, while fertilized plots receiving rhizomes had less biomass than plots that received no 

introduction (Figure 3-7.4).  When averaged over propagule introduction, disturbance had no 

effect on Schoenoplectus biomass under fertilized conditions (Figure 3-7.5).  However, in 

unfertilized plots, undisturbed plots had greater biomass than those that were subjected to non-

lethal or lethal disturbances.  
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Cumulative live biomass was greatest in fertilized plots and in undisturbed control plots 

(Table 3-2; Figure 3-7.6(a) and (b)).  Total biomass in non-lethal and lethally disturbed plots was 

less than in undisturbed plots.  Biomass in non-lethal and lethally disturbed plots was different 

from each other.  Overall, biomass in fertilized treatments was 30% higher than in unfertilized 

treatments. 

 Stem Height 

Stem height for both Spartina and Distichlis was greatest in undisturbed and fertilized 

treatments (Table 3-3; Figures 3-8.1(a) and (b) and 3-8.3(a) and (b)).  Distichlis stem height was 

lowest in lethally disturbed plots (Figure 3-8.1(a)), while Spartina stem height was lowest in 

non-lethal disturbances (Figure 3-8.3(a)).  Distichlis stem height was also significantly different 

in each disturbance treatment, with tallest stems in undisturbed plots, and shortest stems in lethal 

disturbances.  However, Distichlis stem height in disturbance treatments was dependent on 

fertilization (Table 3-3; Figure 3-8.2).  Under unfertilized conditions, Distichlis stem height was 

highest in undisturbed plots, yet was not different between non-lethal and lethal disturbances.  

Similar to ambient conditions, Distichlis stem height under fertilized conditions was also highest.  

However, stem height in fertilized non-lethally disturbed plots was lower than undisturbed plots 

and higher than lethally disturbed plots.   

Phragmites Viability 

Once the experiment was terminated and all above ground vegetative material was 

harvested, all remaining Phragmites rhizomes and roots were excavated and returned to the 

laboratory to determine viability with tetrazolium azide (Parker 1953, Steponkus and Lanphear 

1967).  Of the 30 sods planted in the experiment, 1/3 remained viable even under drought 

conditions (Figure 3-9).  Four of the 10 found alive were in undisturbed plots, 5 were in non- 
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Table 3-3.  ANOVA table of Distichlis and Spartina stem length analyzed using PROC MIXED.  
Bold indicates statistical significance at alpha = 0.05.  
 

Stem Length  Distichlis  Spartina 

Source df  F P  F P 

Disturbance (D) 2  37.82 <0.0001  22.89 <.0001 
Nutrient (N) 1  610.23 <0.0001  134.14 <.0001 
D x N 2  3.18 0.0428  1.17 0.3421 
Propagule (P) 1  0.2 0.6584  4.02 0.0564 
N x P 1  0.01 0.9062  1.36 0.2553 
D x P 2  0.68 0.5092  2.71 0.0871 
N x D x P 2  0.56 0.5721  1.92 0.1683 

 

lethally disturbed plots and 1 remained viable in a lethally disturbed plot.  Six plants remained 

viable under ambient nutrient conditions while 4 remained viable in fertilized plots. 

Environmental Variables 

Although there were no differences for most environmental variables with respect to 

experimental treatments, there was a significant time effect (Table 3-4). 

 Sulfide, Salinity and pH 

Interstitial sulfide concentrations and pH were not different between any nutrient or 

disturbance treatment, yet both of these environmental variables changed over time (Tables 3-4 

and 3-5).  Sulfide concentrations steadily decreased throughout the study while pH fluctuated 

between 6.48 and 7.34 (Table 3-6).  Low water tables as a result of the drought conditions 

prevented sulfide concentrations from reaching a biologically significant level (i.e., growth 

limiting) and pH levels were within normal ranges reported for brackish marshes (Anastasiou 

and Brooks 2003).  Although salinity generally increased over time as a result of drought 

conditions and there was a slight difference in salinity between disturbance treatments, there was 

an interaction between time and level of disturbance (Table 3-4).  On the June 1999 and January  
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Figure 3-8: Stem height of Spartina patens and Distichlis spicata.  Graphs 1 and 3 reflect 
stem height tested by the main effects of (a) disturbance (control, non-lethal and lethal) 
and (a) nutrient (fertilized and ambient) for total Distichlis spicata and Spartina patens.  
Graph 2 shows the significant interaction of disturbance and nutrient on D. spicata stem 
height.  Error bars represent standard error and bars that share letters are not significantly 
different. 
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Figure 3-9:  Results of the tetrazolium assay for determination of viable Phragmites 
rhizomes.  The pie chart represents the number of viable versus non-viable exhumed 
rhizomes while the bar graph indicates the percentage of surviving plants from each 
disturbance/nutrient treatment. 
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Table 3-4.  ANOVA table of interstitial environmental variables analyzed using PROC MIXED and time as a repeated measure.  Bold 
indicates statistical significance at α = 0.05. 
 

Environmental 
Variables Sulfide (uM) Salinity (ppt) pH Ammonium (µM) Eh (mV-Surface) Eh (mV-Depth) 

Source df F P F P F P F P F P F P 

Time (T) 4 3.67 0.0074 315.98 <0.0001 48.10 <0.0001 27.26 <.0001 258.65 <0.0001 126.39 <0.0001 
Nutrient (N) 1 0.10 0.7471 0.16 0.6882 0.43 0.5128 126.68 0.0004 2.35 0.1277 0.30 0.5839 
T x N 4 0.16 0.9561 0.74 0.5667 0.42 0.7904 8.04 0.0009 2.14 0.0798 0.25 0.9083 
Disturbance (D) 2 0.91 0.4048 6.59 0.0019 1.20 0.3045 6.47 0.0213 1.09 0.3400 0.19 0.8278 
T x D 8 0.87 0.5427 6.78 <0.0001 0.59 0.7841 3.63 0.0041 0.61 0.7682 1.85 0.0744 
N x D 2 0.96 0.3846 1.14 0.3221 1.24 0.2934 4.43 0.0507 0.91 0.4039 2.14 0.1222 
T x N x D 8 0.84 0.5703 0.63 0.7516 0.55 0.8138 2.05 0.0743 0.88 0.5382 3.18 0.0026 

 
 
Table 3-5.  Environmental variables measured in this study and compared by disturbance and nutrient treatment.  All measurements 
are ± SE, and statistical significance is denoted by bold letters and corresponding p-values adjacent to each parameter. 
 

  Disturbance  Nutrient 
Environmental Variable 

n  Control Non-Lethal Lethal  Ambient Fertilized 

Sulfide (µM) 50, 75  0.0424 ± 0.0154 0.067 ± 0.447 0.0151 ±  0.006  0.036 ± 0.011 0.047 ± 0.03 

Salinity (ppt) (p = 0.0019) 50, 75  27.88 ± 0.943 (B) 28.86 ± 0.888 (A) 27.48 ± 0.977 (B)  27.93 ± 0.731 28.21 ± 0.798 

pH 50, 75  6.95 ± 0.055 7.03 ± 0.060 7.01 ± 0.047  7.01 ± 0.043 6.98 ± 0.046 

NH4 (µM) (dist: p = 0.0559)  
(nut:  p = 0.0006) 50, 75  292.53 ± 91.24 (B) 317.59 ± 79.78 (B) 1100.08 ± 447.62 

(A)  37.90 ± 4.15 (B) 1102.23 ± 301.76 (A) 

Eh surface (mV) 300, 
450  293.48 ± 16.65 292.43 ± 16.09 292.93 ± 16.19  301.55 ± 13.05 284.34 ± 13.52 

Eh depth (mV) 300, 
450  125.38 ± 14.40 154.09 ± 16.42 163.28 ± 15.49  145.80 ± 12.45 149.36 ± 12.86 
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Table 3-6.  Environmental variables measured in this study and compared by sample date.  All measurements are ± SE, and statistical 
significance is denoted by bold letters and corresponding p-values adjacent to each parameter. 
 

 Sample Date 
Environmental Variable 

n June 1999 Sept 1999 Jan 2000 June 2000 Oct 2000 

Sulfides (µM) (p = 0.0053) 30 0.1582 ± 0.076 (A) 0.039 ± 0.0092 (B) 0.009 ± 0.001 (B) 0.0012 ± 0.0003 (B) 9.16e-5 ± 6.54e-6 (B) 

Salinity (ppt) (p < 0.0001) 30 24.23 ± 0.334 (D) 27.6 ± 0.569 (C) 19.73 ± 0.332 (E) 30.96 ± 0.497 (B) 37.83 ± 0.437 (A) 

pH (p < 0.0001) 30 6.48 ± 0.022 (D) 7.34 ± 0.086 (A) 6.96 ± 0.025 (C) 7.18 ± 0.039 (B) 7.02 ± 0.032 (C) 

NH4 (µM) (p = 0.0492) 30 60.34 ± 8.70 (B) 128.88 ± 56.79 (B) 1386.88 ± 721.53 (A) 745.32 ± 208.88  (AB) 528.93 ± 150.05 (AB) 

Eh surface (mV)(p = 0.0001) 180 147.50 ± 9.54 (C) 383.98 ±10.46 (B) 25.07 ± 12.77 (D) 458..48 ± 7.48 (A) 449.72 ± 9.32 (A) 

Eh depth (mV) (p = 0.0001) 180 109.60 ± 8.23 (B) 38.04 ± 12.37 (C) -49.80 ± 9.12 (D) 321.32 ± 17.47 (A) 318.74 ± 12.21 (A) 

 
 
 
 
 
 



 

91 

2000 sample dates, there were no differences between salinities regardless of level of disturbance 

(Figure 3-10).  However, in September 1999 and in June 2000, salinities were highest in 

non-lethally disturbed treatments.  In contrast, salinities were highest in both undisturbed and 

lethally disturbed plots in October 2000.  No clear pattern emerged for porewater salinity in 

respect to level of disturbance even though porewater salinity levels had reached a level well 

above that typical for brackish marshes by the end of the study (Table 3-6). 

 Ammonium 

Ammonium was the only variable in this study to demonstrate a clear treatment effect 

(Table 3-4).  Ammonium concentrations were higher in fertilization treatments and in lethally 

disturbed plots (Table 3-5).  However both disturbance and fertilization effects were both 

dependent on time (Table 3-4).  Fertilization took place once every four months, two weeks prior 

to sampling.  Porewater ammonium concentrations steadily accumulated in sediments during this 

time as a result of the drought and resulting low water tables (Figure 3-11.1).  With reduced 

rainfall amounts (Figure 3-2), it is likely that ammonium was not flushed through the sediments.  

In addition, ammonium concentrations were further influenced by level of disturbance (Table 3-

4).  Initial ammonium concentrations were greater in non-lethal plots in June 1999 (Figure 3-

11.2).  In September 1999, ammonium concentrations were highest in both undisturbed and non-

lethally disturbed plots when compared to lethally disturbed plots on that sample date.  Although 

porewater ammonium concentrations in disturbance treatments were not different for the 

remainder of the study, concentrations increased over time in all fertilized plots, with the highest 

concentrations in January and June 2000.  
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Figure 3-10:  Porewater salinities (ppt) by sample date and level of disturbance.  Error bars 
reflect SE. 
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Figure 3-11:  Ammonium concentrations (µM) by Sample date and Nutrient enrichment (3-11.1), 
and ammonium concentrations (µM) by Sample date and Disturbance (3-11.2).  Error bars reflect 
SE. 
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Figure 3-11 
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Sediment Eh 

Soil redox taken at both the sediment surface and at 15 cm depth was not affected by 

disturbance or fertilization treatments in this study (Tables 3-4 and 3-5).  In general, Eh in the 

upper 1-2 cm of the soil surface was, on average, 150 mV higher than at 15 cm depth.  Even  

though no treatment effects were realized, surface redox changed over time (Tables 3-4 

and 3-5).  Based on Patrick’s (1980) classification, sediments in this study were only reduced in 

September 1999 and January 2000, moderately reduced in June 1999 and aerated in June and 

September 2000.  Throughout the study, strongly reduced conditions never occurred, most likely 

due to low soil moisture as a result of drought conditions.   

Although Eh at 15 cm depth changed over time, this response was dependent on both 

fertilization and level of disturbance (Table 3-4; Figure 3-12).  Although Eh changed markedly 

between sample dates, nutrient and disturbance treatments had an additional effect on Eh.  In 

June 1999, January 2000 and September 2000, Eh was not different between nutrient or 

disturbance treatments.  However, in September 1999, Eh was lowest in control and non-lethally 

disturbed fertilized treatments.  In unfertilized treatments that same sample date, Eh was lowest 

only in non-lethally disturbed plots.  A similarly perplexing pattern was observed in Eh 

measurements taken in June 2000 (Figure 3-12), where Eh measurements in fertilized 

undisturbed treatments were lower than in non-lethal or lethally disturbed plots.  Under 

unfertilized conditions, lethally disturbed plots had the lowest redox.   

Discussion 

One of the major questions surrounding invasive species ecology is whether native 

communities demonstrate characteristics that influence the success of invading species.  We 

tested the invasibility of a brackish marsh by manipulating both nutrient levels and disturbance 
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Figure 3-12.  Sediment Eh levels (mV) taken at 15cm depth by sample date, nutrient enrichment 
and disturbance.  Error bars reflect SE 
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regimes in conjunction with purposeful introductions of Phragmites, a species that has been 

increasingly invasive in higher salinity wetlands over the last fifty years (Winogrond and Kiviat 

1997, Chambers et al. 1999, Rice et al. 2000).  Contrary to our hypotheses, the natural 

community demonstrated a greater response to disturbances and nutrient additions than did the 

introduced Phragmites.  Yet, a third of introduced Phragmites plants remained viable through 

the experiment, even over two-growing seasons of drought.  Hence, that persistence of an 

introduced species until environmental conditions improve could be an important pathway of 

invasion of some species, and Phragmites in particular. 

Community invasibility was first correlated with species richness (Elton 1958, Tilman 

1982, Crawley 1987, Tilman 1988, Pyle 1995, Smith and Knapp 1999), yet positive correlations 

between invasibility and both species-poor and species-rich communities exists (Fox and Fox 

1986, Crawley 1987, Rejmanek 1989, Richardson and Bond 1991, Knops et al. 1995, Robinson 

et al. 1995, Tilman 1997, Wiser et al. 1998).  Brackish marshes have relatively low species 

diversity (Mitsch and Gosselink 1993) and are characterized in the Northern Gulf of Mexico by 

Spartina patens and Distichlis spicata.  The low diversity is likely a product of harsh 

environmental conditions (e.g., salinity and soil waterlogging) where only species adapted for 

those conditions can survive (Von Holle et al. 2003).  Yet, in the last 40 years, invasion by the 

common reed, Phragmites, has become prevalent in brackish areas where it has not historically 

been found (Chapter 2, Chambers et al. 1999, Bart and Hartman 2000, Rice et al. 2000). 

The frequency and intensity of disturbance is one of the principal factors considered to 

regulate community invasibility (Fox and Fox 1986, Hobbs 1989).  Disturbances alter resource 

supply in communities by creating gaps, opening space, altering hydrology or nutrient levels 

(Pickett and White 1985).  Because of their position in the landscape, wetlands experience 
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natural disturbances typical for both terrestrial (e.g., fire) and aquatic (e.g., tidal/storm surges, 

sedimentation) ecosystems (McKee and Baldwin 1999).  Yet, as population growth continues to 

climb in nearshore areas, development pressures have increased in the coastal zone.  As a result, 

wetland communities have become subject to both increased intensities and frequencies of 

anthropogenic disturbance (Chambers et al. 1999, McKee and Baldwin 1999, Bart and Hartman 

2000).  Much like physical disturbances, wetlands are exposed to increased nutrient loads which 

can result in shifts of plant community composition and diversity (Levine et al. 1998, Boyer and 

Zedler 1999, Pennings et al. 2002).   

Both disturbance intensity/frequency and eutrophication can serve as a source of 

temporal and spatial heterogeneity (Sousa 1984), altering both species composition and 

community structure (Suding and Goldberg 2001).  It impacts the relative abundances of 

populations and in some cases, provides ideal opportunities for invasive species to establish 

(Hood and Naiman 2000, Brewer 2002).  In marsh communities, vegetative recovery after 

physical disturbances is most often promoted by rapid growth of clonal species (Hartman 1988, 

Bertness 1991, Allison 1995), whereas seedling establishment tends to be a rare phenomenon in 

the recolonization process (Shumway and Bertness 1992).  This brackish marsh community is 

dominated primarily by Spartina patens and Distichlis spicata, with sparse inclusions of 

Schoenoplectus robustus.  Within three months of enacting both lethal and non-lethal 

disturbances, Spartina and Distichlis recovered to almost 50% of natural cover densities (Figures 

3-5(b) and (c)).  In fact, Distichlis cover in non-lethally disturbed plots exceeded that 

demonstrated in control plots in the initial three months (Figure 3-5(b)).  Both Spartina and 

Distichlis have been observed to quickly revegetate denuded areas through vegetative growth 

even in the absence of seedling establishment (Allison 1995).  Surprisingly, the non-dominant 
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species Schoenoplectus initially responded very strongly to disturbances, far exceeding densities 

reflected in control plots, yet declined over the course of the study (Figure 3-5(d)).  Although 

increased salinities (Table 3-6) resulting from the drought could be responsible for the reduction 

in Schoenoplectus cover and biomass (Figures 3-4.4, 3-5(d) and 3-7.4), it is more likely a result 

of increased competition with Spartina and Distichlis.  Both Spartina and Distichlis biomass, 

stem height and cover rapidly increased in fertilized disturbed treatments often laying over and 

smothering adjacent vegetation (Figures 3-4.3, 3-7.2, 3-7.3, and 3-8).  Furthermore, the addition 

of Phragmites rhizomes in fertilized plots in the form of sods may have further prevented 

Schoenoplectus from reaching levels found in control plots with no propagule introduction 

(Figure 3-7.5). 

 Louisiana experienced two record setting drought seasons in both 1999 and 2000 (Figure 

3-2).  As a result, water tables were depressed and porewater salinities ranged from 20 to 38 ‰, 

which exceeded that normally measured in brackish communities (Table 3-6; Mitsch and 

Gosselink 1993).  It is very likely that this extreme meteorological event depressed treatment 

responses of measured variables such as pH, salinity, redox, and sulfide concentrations (Table 3-

5).  As expected, ammonium concentrations were positively correlated with fertilization 

treatments (Table 3-6; Figure 3-11.1).  However, ammonium concentrations increased over time, 

indicating that nutrients were accumulating in fertilized plots and that more and more exchange 

sites were becoming saturated.  This is likely due to the decrease in flushing associated with 

drought conditions (Figure 3-2).  Regardless of the drought conditions, both Distichlis and 

Spartina responded vigorously to fertilization treatments, with a two-fold increase in Distichlis 

biomass and a third more Spartina biomass in fertilized plots (Figures 3-7.2(b) and 3-7.3(c)) 

when compared to unfertilized treatments.   
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Success of Phragmites Introductions 

 Although introduced Phragmites rhizomes began growing immediately in all disturbance 

and nutrient treatments, no seedlings emerged in treatments receiving seed introductions.  

Previous field and greenhouse experiments indicate that seedling emergence in populations of 

Phragmites located in the study area is a rare phenomenon (Stanton, unpublished data).  Seed 

incubated under optimum conditions (see Ekstam and Forseby 1999, Ekstam et al. 1999) in a 

climate controlled growth chamber did not germinate, and furthermore, field plots inoculated 

with seed did not give rise to any seedlings under natural conditions.  Germination of Phragmites 

seed is generally infrequent (Pellegrin and Hauber 1999, Mauchamp et al. 2001), and if 

germination does occur, seedlings are sensitive to harsh conditions (i.e., high salinities and 

drought) and can take up to 2 years to become successfully established (Haslam 1971).  In 

contrast, plants arising from root and rhizome fragments are more resistant to increased salinities 

and have a higher chance of survival (Lissner and Schierup 1997, Bart and Hartman 2002).   

Phragmites rhizomes introduced into disturbance and nutrient treatment plots began to 

grow immediately, with rhizomes in non-lethally disturbed plots responding with more biomass 

and higher cover measurements than in lethally disturbed or undisturbed treatments (Figures 3-

5(a) and 3-7.1(a)).  Furthermore, Phragmites rhizomes exhumed from 5 non-lethally disturbed 

plots and 4 undisturbed plots receiving rhizome introductions remained viable at the conclusion 

of the experiment (Figure 3-9).  This response may be a result of facilitation of harsh physical 

conditions by neighboring plants (Franco and Nobel 1988, Bertness and Callaway 1994, Bertness 

and Hacker 1994).  Spartina, Distichlis and Schoenoplectus were present in undisturbed plots 

and re-vegetated non-lethally disturbed treatments more quickly than in lethally disturbed plots 

(Figures 3-5(b-d)).  The presence of aboveground vegetation most likely buffered drying 
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conditions with increased shade.  Furthermore, the greater Phragmites cover and biomass 

measured in non-lethally disturbed plots when compared to undisturbed plots may be a result of 

reduced competition for light capture.  Phragmites ability to capture light for initial growth 

would have been greater in non-lethally disturbed plots relative to undisturbed control plots 

where neighboring vegetation remained.  Thus, non-lethal disturbances might be more 

susceptible to Phragmites establishment and subsequent invasion than lethal disturbances.  

Although harsh conditions would be reduced in undisturbed areas, competition between resident 

and establishing species could potentially favor the residents. 

One of the most important results of this study was the persistence and viability of 

introduced Phragmites plants (Figure 3-9) through two consecutive record-breaking drought 

seasons (Figure 3-2).  Lodge (1993) describes that the ecological resistance to an invading 

species occurs in part because of environmental, demographic and biotic factors influencing the 

arrival and establishment of invading species.  Environmental conditions (i.e., drought) during 

the invasion process acts as a major physiological filter that can preclude a species altogether or 

induce a significant lag time between establishment and spread of an invading species.  Thus, an 

organism’s ability to persist under unfavorable conditions will increase it chances of spreading 

once conditions improve.  Of the 30 Phragmites sods planted in this study, 10 remained viable at 

the conclusion of the experiment (Figure 3-9).  All Phragmites vegetation (above- and 

belowground) was excavated at the end of the experiment and tested using the tetrazolium 

viability assay (Parker 1953, Steponkus and Lanphear 1967).  Of the 10 surviving Phragmites 

plants, 6 were located in fertilized treatments and 4 were in non-fertilized treatments (Figure 3-

10).  Although 5 Phragmites plants survived in non-lethally disturbed plots and 4 survived in 

control plots, only one remained viable in lethally disturbed plots.  Even though the 
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environmental conditions in lethally disturbed plots may have been harsher than in other 

disturbance treatments, the persistence of Phragmites rhizomes through harsh environmental 

conditions is clear.  Its ability to persist until benign environmental conditions return could be a 

likely mechanism increasing establishment success and hastening Phragmites expansion.   

Response of the Natural Community to Invasion 

A community is invasible when an introduced species is able to establish and persist or 

expand (Burke and Grime 1996).  One barrier to invasion is competition from established native 

species (Crawley 1986, Crawley 1987, Rejmanek 1989, Burke and Grime 1996, Rejmanek 2000, 

Thompson et al. 2001).  However, the success of an invading species is also dependent on 

competitive ability, growth rate and ability to persist in a new environment (Chambers et al. 

1999, Windham and Lathrop 1999, Rice et al. 2000, Saltonstall 2003).  In this brackish marsh, 

both Spartina and Distichlis responded to disturbance and fertilization treatments with much 

greater cover and biomass than Phragmites (Figures 3-5 and 3-8).  At the end of the experiment, 

unfertilized Spartina biomass was approximately 65 times as great as unfertilized Phragmites, 

and 85 times more when in fertilized treatments (Figure 3-7).  Likewise, fertilized Distichlis 

biomass was 26 times more than fertilized Phragmites, and 15 times more in unfertilized 

treatments (Figure 3-7).  Although the increase in biomass and cover of the resident vegetation 

did restrict success and establishment of Phragmites in some cases, 30% of Phragmites plants 

remained viable even through drought conditions (Figure 3-9).  This indicates that even under 

extreme environmental conditions, this brackish marsh is susceptible to Phragmites invasion.   

Conclusion 

It is clear that Phragmites is invading brackish marshes where it has not occurred 

previously (Chapter 1,Cronk and Fuller 1995, Chambers et al. 1999, Galatowitsch et al. 1999).  
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Although an invasive genetic variant originating from Europe has been identified, and is known 

to be responsible for much of the spread along the Eastern Seaboard of the United States, it isn’t 

known if the populations in this study are of the same genetic origin (Burdick et al. 2001).  

Phragmites has many characteristics that enable it to be a dominant competitor once it 

establishes in brackish marshes:  It’s larger morphology with tall fast growing clonal culms (3-4 

m) and a deep (~1 m) integrated rhizome network can effectively out-compete natural marsh 

vegetation (D'Antonio 1993, Pyle 1995, Brewer 2002).  Additionally, a deep rhizome network 

may enable Phragmites to utilize nutrients that are unavailable to other species with a shallower 

root zone, or utilize a deeper water table that is lower in salinity than porewater found closer to 

the marsh surface (Myers 1983, Milbau et al. 2003).  Furthermore, the time required for 

Phragmites to develop a rhizome network and carbohydrate reserve after establishment could 

answer questions concerning observed lag times between establishment and active spread. 

Invasion ecology has sought to answer community invasibility questions through closer 

examinations of disturbance regimes (Burke and Grime 1996) of natural communities in 

combination with the characteristics of invading species .  Invasions seem particularly successful 

when the invaders exhibit certain traits such as fast growth, wide environmental tolerances, and 

greater size .  Even though Phragmites cover declined over the course of the study, one third of 

the Phragmites plants introduced to undisturbed and disturbed plots in this study remained viable 

even during two record setting drought seasons.  The persistence of Phragmites indicates the 

potential for active growth and spread once conditions improve, and thus demonstrates that 

brackish marshes are likely susceptible to Phragmites invasion even under severe environmental 

conditions. 
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CHAPTER 4 
THE ECOSYSTEM EFFECTS OF PHRAGMITES AUSTRALIS, AN INVASIVE 

CLONAL PLANT SPECIES IN SOUTHWESTERN LOUISIANA 
 

Introduction 

The increasing prevalence of invasive species and their ensuing impact on natural 

community structure has become a primary concern for ecologists (Mooney and Drake 1986, 

Vitousek 1992, Carroll and Dingle 1996, Vitousek et al. 1996, Cox 1999).  There are ever 

increasing reports of invasive species colonizing natural areas (Cox 1999), and in many cases 

threatening natural species diversity and potentially altering ecosystem services and function 

(Vitousek 1984, Gordon 1998).  Thus, it seems logical that invasive species that are competitive 

enough to invade natural habitats are also likely to have significant impacts to community 

structure, composition, and least apparently but most importantly, ecosystem services that the 

natural community provides (D'Antonio and Vitousek 1992). 

Although non-indigenous animals have long been recognized to have significant impacts 

to resource availability, community structure, and ecosystem functioning (Elton 1958, Vitousek 

1984, Cloern and Alpine 1991, Schoesser and Nalepa 1996, Cox 1999), non-native plants also 

have major effects (Vitousek 1984, 1992, Gordon 1998, Levine 1999, Levine et al. 2003).  Non-

native plants can use resources in different manners than native species, alter flow of energy or 

biomass by changing food webs, and also alter disturbance regimes that often facilitate further 

colonization of non-native species (Vitousek 1990, Crooks 2002).   

Often, non-native plant species that possess markedly different growth forms or habits 

can modify the physical structure of the ecosystem itself (i.e., ecosystem engineering), many 

times irreversibly (Zavaleta 2000, Crooks 2002).  For example, the growth form of Lolium 

perenne, an invasive perennial grass, increases fire frequencies in coastal chaparral areas in 
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California thus preventing successful establishment of native species (Zedler 1995).  Similarly, 

tall invasive species may out-compete shorter competitors for sunlight or conversely, even 

promote the establishment of other species by reducing salinities in coastal environments or 

increasing soil moisture content in arid environments (Franco and Nobel 1988, Bertness and Yeh 

1994, Holmgren et al. 1997).  Deep rooted invasive species, such as Tamarix in arid and semi-

arid riparian areas of southwestern U.S., have significantly higher transpiration rates than native 

species, effectively drawing down water tables and lowering flow rates of waterways (Vitousek 

1984, Zavaleta 2000).  It seems apparent that invasive organisms demonstrating a different 

morphology or physiology can have an immediate effect on native species, and furthermore, are 

likely to alter ecosystem processes and subsequent ecosystem services (Ehrenfeld 2001). 

Although shifts in community structure are immediately noticed when invading species 

displace native species, it is much more difficult to identify the nature of ecological impacts to 

ecosystem function and services.  Plants can alter soil structure over time through litter build up 

and hummock formation, changing flooding regime and the rates of nutrient renewal and storage 

(Bowden 1987), yet once those effects are realized the invasion is often too widespread to 

examine the rate at which ecosystem functions change over time.   

Phragmites australis (Cav.) Trin. Ex Steud., the common reed, has expanded its 

distribution in North America during the past 50 years (Bailey 1997, Rice et al. 2000, Warren et 

al. 2001).  Although long considered a native species, a genetic variant originating from Europe 

has been identified and thought to be responsible for the observed spread throughout many 

inland fresh water marshes, coastal brackish and salt marshes of the mid-Atlantic and Gulf Coast 

regions of the United States (Neiring  and Warren 1980, Orson 1987, Chambers et al. 1999, 

Saltonstall 2002).  Phragmites australis (hereafter referred to as Phragmites) often forms large 



 114

mono-specific stands in habitats where it had not occurred previously (Winogrond and Kiviat 

1997, Galatowitsch et al. 1999, Clevering and van der Toorn 2000, Rice et al. 2000).  Like many 

of the native marsh plants it replaces, Phragmites is also a grass.  However, its clonal 

morphology is strikingly different with culm heights in excess of 3 m replacing natural brackish 

marsh vegetation that seldom exceeds 1 m.  In addition, Phragmites rhizomes can penetrate 

marsh sediments to a depth of a meter (Burdick et al. 2001) where native graminoid rooting 

depth seldom exceeds 30 cm (Mitsch and Gosselink 1993). 

With a distinctly different morphology, it is not surprising that Phragmites invasions 

have been correlated with changes in ecosystem characteristics of invaded areas.  In New Jersey 

brackish marshes, Windham and Lathrop (1999) found that Phragmites biomass was 10 times 

greater than that of neighboring un-invaded marsh, and invaded areas had higher redox levels 

while both salinities and water levels were reduced.  Furthermore, soil properties were correlated 

with both age and biomass of Phragmites communities.  Water levels and micro-topographic 

relief can be reduced in as little as three years while other variables may take up to 15 years to 

stabilize at peak difference from adjacent un-invaded communities (Windham and Lathrop 

1999).  Phragmites also can decrease ammonium concentrations relative to adjacent un-invaded 

Spartina alterniflora or S. patens marsh (Chambers 1997, Windham and Ehrenfeld 2003).   

Phragmites is invading relatively undisturbed brackish marshes in Southwestern 

Louisiana, often forming circular mono-specific stands (L. Stanton, personal observation).  

Similar establishment patterns have been reported in brackish marshes in the Mid-Atlantic 

United States coast (Lathrop et al. 2003).  Although it isn’t known if these Phragmites 

populations are the non-native European strain, the rapidly increasing numbers and sizes of these 

populations have attracted the attention of the public and marsh managers (Tom Hess, LWDF, 
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Louisiana Department of Wildlife and Fisheries).  By using a time series of historic aerial 

photographs, the establishment time and spreading rate has been determined for several large 

mono-specific Phragmites stands (Chapter 2).  These circular stands appear to originate from a 

single establishment point, spread outwardly in all directions and range in size from 100 to 150 

m in diameter.  Thus, it is intuitive that the area in the center of these Phragmites “islands” has 

been occupied by Phragmites for the longest period of time while the areas closer to the edge of 

these colonies have been occupied by Phragmites the shortest period of time.  The presence of 

these circular Phragmites communities provides an opportunity to examine differences in 

ecosystem functioning between different vegetation types over measurable time scales. 

To determine if Phragmites does alter ecosystem functions in a Northern Gulf of Mexico 

brackish marsh, I addressed several research questions: (1) Do brackish marshes dominated by 

Phragmites exhibit environmental characteristics different than those in un-invaded marsh?  (2) 

Are soil decomposition rates affected by Phragmites invasion?  (3) Do physical characteristics 

(i.e., elevation, peat accumulation, sediment composition) of brackish march change over time 

when invaded by Phragmites?  (4) Does aboveground biomass production change as Phragmites 

invades brackish marsh areas?  To answer these research questions, four distinct successional 

community types were identified (un-invaded marsh, ecotone, the edge of mono-specific 

Phragmites and the center of mono-specific Phragmites) along transects extending from the 

center of three Phragmites colonies outward to natural un-invaded brackish marsh.  My results 

show that Phragmites has greater aboveground biomass and organic matter accumulation relative 

to un-invaded marsh.  This study demonstrates for the first time that Phragmites increases marsh 

surface elevation relative to un-invaded marsh by affecting soil composition, peat development 

and lower cellulose decomposition rates.  These effects may allow Phragmites dominated 
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marshes to better tolerate increasing water levels due to sea-level rise/land subsidence than short 

stature graminoids.  

Methods 

Study Site  

Rockefeller Wildlife Refuge (hereafter RWR, 29°55' N 92°30' W) lies within the 

southeastern portion of the Chenier Plain Region (Cameron Parish; Figure 4-1).  It is bordered on 

the south by the Gulf of Mexico, on the north by the Grand Chenier Ridge complex, and contains 

about 32,000 hectares.  Present-day RWR was purchased by the Rockefeller foundation in 1914, 

and subsequently deeded to the state of Louisiana in 1920 under the mandate to “preserve, 

maintain, and improve, whenever practical, the refuge lands in perpetuity”.  The majority of the 

refuge is actively managed through the use of water control structures to maximize germination 

of annual plants important as food for waterfowl (Wicker et al. 1983).   

The study site, Price Lake Unit, is located in the southwestern corner of the Rockefeller 

Wildlife Refuge and is bordered to the south by the Gulf of Mexico (Wicker et al. 1983).  Price 

Lake Unit is passively managed with fixed crest weirs and low hurricane levees (Phillips 2002).  

It contains approximately 7500 acres of brackish to saline marsh and shallow open water bodies.  

The crest of the weirs is set to 15 cm below the average marsh level to reduce the inflow and out 

flow of water over an average tidal cycle.  This prevents excessive draining of marsh ponds 

during periods of sustained low tides and result in a stabilization of water levels and a reduction 

in hydrological energy (Wicker et al. 1983).  The brackish marsh in Price Lake Unit is comprised 

primarily of Spartina patens and Distichlis spicata, with sparse inclusions of Schoenoplectus 

robustus.  Discreet circular populations of Phragmites have become established within this area,  
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Figure 4-1: Location of Rockefeller Wildlife Refuge, Louisiana.  The refuge lies in southwestern 
Louisiana on the border between Cameron and Vermillion Parishes.   
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and have actively spread over the last 40 years.  Hereafter in this study, these species will be 

referenced by their generic names, Spartina, Distichlis, Schoenoplectus and Phragmites. 

Experimental Design 

Three discreet circular Phragmites invasions were located within the Price Lake Unit at 

RWR.  Each of these stands was first observed on aerial photography of that area in 1968 and 

have steadily increased in size (Chapter 2).  A transect was extended due south from the center of 

each Phragmites colony into the natural un-invaded short graminoid marsh.  This created, in 

essence, a “chronosequence” of the marsh area occupied by Phragmites.  Along this Phragmites 

chronosequence, four distinct community types were identified; the first is the un-invaded marsh 

(no Phragmites), the second is the ecotone between the un-invaded marsh and Phragmites 

(Phragmites age ~3 years), the third is the community at the edge of mono-specific Phragmites 

(age ~7 years) and the fourth is the center of the mono-specific Phragmites stand (age ~40 

years).  A randomized block design was employed, with each invasion serving as a block.  

Within each community type, three 1-m2 plots were randomly established at least 2 m apart in 

which environmental and vegetative data were collected.  In the center of each colony, sample 

plots were randomly arranged so that elevation transects would not disturb the plots.  For each 

statistical analysis, community type and sample date (when applicable) were analyzed as fixed 

effects in order to study spatial and temporal variation in the study site, while block (or colony) 

was analyzed as a random effect to allow inferences to other Phragmites colonies in this study 

area.  Unless otherwise noted, all statistical analyses were performed using the PROC MIXED 

procedure of the SAS Statistical Package (SAS Institute 2003).  All significant main effects were 

further investigated using Tukey’s post-comparison test.  In order to improve normality and 
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homogeneity of variance, some data transformations were required.  All differences indicated in 

results are significant unless otherwise noted. 

Environmental Measurements 

At four different times during a 16-month period, sulfide concentration, salinity, and pH 

were measured from porewater within each subplot in each community type within each colony.  

Porewater was removed from each plot in the 10-20-cm zone of the soil profile using a suction 

sampler (McKee et al. 1988, Koch and Mendelssohn 1989).  The sampler consisted of a rigid 

plastic tube (3-mm inside diameter) with numerous small holes along the bottom 5-cm segment 

of the tube.  The rigid tube was connected with Tygon tubing to a 50-ml syringe with a three-

way valve.  Approximately 30 ml of relatively clear interstitial porewater was collected at each 

sampling point.  Five ml of unfiltered interstitial water was immediately mixed with 5 ml of anti-

oxidant buffer and placed on ice for laboratory analysis of total soluble sulfide concentration 

(sulfide electrode, Lazar Research Laboratories, Los Angeles, CA, USA). Another unfiltered 15-

ml aliquot was reserved for pH and salinity measurements.  Salinity was measured using a 

handheld field refractometer and pH was measured using an Altex Model 3560 Digital pH meter 

with a Corning General Purpose Combination Electrode. 

 Both ammonium concentrations and nitrogen mineralization rates were measured in 

sediment from each of the community types on each sample date.  Two soil cores (5-cm diameter 

x 9.5-cm height) were taken in each community type on each sample date.  The first sample was 

sealed in a Ziploc freezer bag, placed on ice, and transported back to the lab for immediate 

extraction with 2N KCl to measure ammonium concentrations (NH4-N extraction following 

Bremner and Keeney 1966).  The second sample was placed into a sealed Ziploc sandwich bag 

and placed approximately 15-cm deep into the marsh sediment to measure in situ nitrogen 
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mineralization (method following Eno 1960).  The incubated bags were retrieved after 14 days, 

placed into Ziplock freezer bags and transported to the lab for extraction also with 2N KCl 

(Bremner and Keeney 1966) to determine the capacity of the soil to release inorganic nitrogen, 

and hence, influence soil fertility.  After extraction, NH4-N samples were filtered through a 0.45 

mm syringe filter and concentrations were measured using the Colorimetric, Automated Phenate 

Method (U.S. Environmental Protection Agency 1979). 

Soil oxidation status (Eh, redox potential) was measured in each subplot within each 

community type within the upper one to two cm of soil (n = 3, hereafter referred to as surface 

Eh) and at a depth of 15 cm (n = 3, depth Eh).  Measurements were made using a calomel 

reference electrode, bright platinum electrodes and a portable Cole-Parmer digital pH-mV meter.  

Each reading was standardized to a standard hydrogen electrode by adding 245 mV to each 

reading (Faulkner et al. 1989).  Soils were classified as aerated (>300 mV), moderately reduced 

(100 to 300 mV), reduced (-100 to 100 mV) and strongly reduced (<-100 mV), following 

Patrick’s (1980) classification.  Eh readings were not corrected for pH. 

Interstitial data was analyzed using a repeated-measures ANOVA (PROC MIXED; SAS 

Institute 2003).  All significant main effects were further investigated using Tukey’s post-

comparison test.  In order to improve normality and homogeneity of variance, NH4, pH, and 

salinity were log transformed while sulfides were square-root transformed.  General trends in the 

data were revealed by plotting the mean and S.E. of the raw data for each community type. 

Vegetative Measurements 

In October (2001), the vegetation in each subplot of each community type within each 

colony was clipped to ground level (0.25 m2) and collected.  Collected vegetation was returned 

to the laboratory and sorted by species.  Stem density was determined for each species.  Stem 
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height and basal diameter was measured for each Phragmites stem, while a random sub-sample 

of 10 stems were selected for height measurements of each of the short graminoid species.  All 

vegetation was then dried in paper bags to constant weight in a forced air oven at 70° C and 

weighed using a calibrated electronic balance.  Both dry weight and stem densities were 

converted to a 1-m2 basis for statistical analysis. 

Decomposition Rates 

Decomposition of cellulose in cotton strips was used as a proxy for evaluating the rates of 

decomposition of soil organic matter (Latter and Howson 1977, Harrison et al. 1988).  Unlike 

natural litter bag tests, cotton strips are comprised almost totally of cellulose.  Since cellulose 

comprises about 70% of the organic carbon compounds in plant tissue, its rate of decay is a key 

factor in plant decomposition. This technique has been used in a variety of different wetland 

environments to show relative rates of cellulytic activity and cellulose decomposition (French 

1988, Harrison et al. 1988, Mendelssohn and Slocum 2004).  Quantifying cellulose 

decomposition using cotton strips is based on the loss of tensile strength (TS) of cellulose fibers, 

referred to cotton tensile strength loss (CTSL; Shirley Institute, Didsbury, Manchester, UK).  

In each community type (n = 4), 2 cellulose strips (12 x 30 cm) were inserted vertically 

into the soil substrate with a spade as described by Maltby (1988).  Approximately 4 cm of the 

strip was left above the soil surface to facilitate retrieval.  Once installed, the sediment surface 

was marked on each strip with a small lateral cut.  The strips remained in the marsh for 14 days 

and were then retrieved.  Reference cotton strips, used to quantify the TS of non-decomposed 

material, were inserted into the soil and immediately removed.  Once collected, all strips were 

washed in tap water to remove the soil and other debris, and then washed in de-ionized water 

until clean.  The strips were then air dried and stored in the dark in plastic bags until analysis.   
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For analysis, the strips were cut into horizontal strips 2.5-cm wide.  These were reduced 

by fraying edges until each strip was exactly 2 cm wide, and corresponded to soil depths of 1, 4, 

7, 10, 13, 16, 19, 22 and 25 cm.  Tensile strength was measured in Newton’s with a motorized 

tensiometer (Dillon Snapshot) equipped with spring loaded roller grips.  To ensure standard 

conditions, all measurements were made at approximately 23 °C and 100% humidity.  For each 

sub-strip, the CTSL was calculated as: 

1)  %CTSL = ((1 – N/C) / D)) x 100 

where N is the TS of the sub-strip in Newton’s, C is the average TS of the reference sub-strips in 

Newton’s, and D is the number of days the strips were left in the ground (14 days).  CTSL is 

therefore expressed on a percent loss per day basis. 

 Community type was analyzed as a fixed effect to study temporal variation between un-

invaded marsh and different-aged Phragmites stands.  To determine how cellulose 

decomposition was affected by soil depth and community type, a factorial model was used with 

depth as a repeated effect.  A separate factorial model was used to examine the effects of time, 

environmental measurements and community type on cellulose decomposition with time as a 

repeated measure. 

A forward stepwise multiple-regression was used to assess how interstitial and physical 

data affected decomposition.  Sediment temperature, water levels, Eh, elevation, bulk density, 

percent organic matter, and porewater pH, salinity and ammonium concentrations were included 

as independent variables while CTSLd-1 was the dependent variable.  This procedure correlated 

those abiotic variables that significantly affected decomposition at the 0.05 level of significance 

(SAS Institute 2003) 
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Elevation 

 In May 2002, 8-cm diameter steel pipe was driven ~16-m into the marsh at the edge of 

each Phragmites colony to serve as benchmarks for elevation measurements. True elevation at 

the top of each pipe was determined by OTS Surveying (2697 Grand Chenier Hwy, Grand 

Chenier, LA 70643) after installation. 

A rotary laser transit was used to measure marsh elevation across each Phragmites 

colony.  Four transects were created in each Phragmites colony using bush blade equipped weed 

trimmers in June 2002 (Figure 4-2(a)).  Each transect began in the center of the colony and 

extended directly northwest, northeast, southeast and southwest so not to disturb the southward 

extending sampling transect.  Allowances were made a priori at the center of each colony so that 

elevation transects would not affect sample plots.  Swaths approximately 5-m wide were cut so 

that the line of sight along each transect would allow elevation measurements to be taken along 

the entire length without requiring transit relocation.   

Elevation measurements were taken at 1-m intervals along each transect with reference to 

community type (un-invaded marsh, ecotone, mono-specific Phragmites at the edge and mono-

specific Phragmites in the center, Figure 4-2(b)).  At each sample point, the elevation was taken 

of the marsh surface and at the clay pan beneath the marsh peat.  Peat was carefully removed by 

hand to ensure that the clay pan beneath was not disturbed.  The difference between these two 

measurements yielded peat depth.  The transect extended into the natural marsh 10-m beyond the 

edge of the Phragmites colony.  After all measurements had been taken, transit height and 

benchmark elevation were rechecked to ensure data were accurate. All elevation data were  
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Figure 4-2(a) and (b).  Figure A is an aerial photograph of a Phragmites colony approximately 
one week after conducting elevation surveys.  Crossed pattern is a result of cutting line of sight 
swaths through the ~100 m diameter colony.  Figure B demonstrates line of sight through the 
colony and measuring elevation using a transit and elevation rod.  All measurements were 
corrected relative to sea level. 

A 

B 
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measured in inches, converted to centimeters and then corrected to true elevation.  Elevation and 

peat thickness were analyzed with community type as a fixed effect and colony as a random 

effect.  

Sediment Bulk Density and Percent Organic Matter Component 

 Sediment cores for measuring bulk density were collected from each community type (n 

= 2).  The bulk density cores (5-cm diameter x 9.5-cm height) were dried at 65 °C to constant 

weight and mass determined.  Once dried, cores were then combusted in a muffle furnace to 

determine ash-free dry weight.  Muffle furnace temperature was incrementally ramped to 450 °C 

to prevent ignition and subsequent loss of material.  Samples remained at 450 °C for 10 hours 

and allowed to slowly cool to 100 °C.  To prevent erroneous weights due to water absorption, all 

samples were weighed at 100 °C.  Percent organic component was then calculated for each 

sample.  Both bulk density and percent organic data were not transformed prior to analyses.   

Results 

Elevation and Peat Thickness 

 Marsh elevation was highest in the center of the mono-specific Phragmites community 

type (Table 1; Figures 4-3(a)).  Marsh elevation within mono-specific Phragmites at the edge 

was significantly higher than in the ecotone, and the ecotone was significantly higher than un-

invaded marsh (Figure 4-3(a)).  Elevation in the center of the Phragmites colony was nearly 10 

cm higher than un-invaded marsh, 6 cm higher than the ecotone and nearly 3 cm greater than in 

the mono-specific Phragmites edge.  Also, elevation differed by colony (Figure 4-3(b)).  

Elevation in colony 3  
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Table 4-1.  ANOVA table of elevation and peat thickness analyzed using PROC MIXED by colony 
and community type.  Bold indicates statistical significance at α = 0.05. 
 

Elevation and Peat Thickness  Elevation  Peat Thickness 

Source of variation  df  F P  F P 

Colony (C)  2  62.11 <0.0001  52.14 <0.0001 
Community type (Ct)  3  134.44 <0.0001  158.85 <0.0001 
C x Ct  6  1.87 0.0846  2.61 0.0172 

 
 
 
 

 
Figure 4-3(a) and (b).  True elevation by (a) community type and by (b) colony.  Error bars 
reflect SE and bars that share letters are not significantly different. 

Age:
3 yrs

Age:
7 yrs

Age:
40 yrs

E
le

va
tio

n 
ab

ov
e 

se
a 

le
ve

l (
cm

)

0

5

10

15

20

25

30
A - By vegetative zone
P < 0.0001
F = 136.44
n =3

B - By Colony
P < 0.0001
F = 67.52
n = 4 B

A

C

A

C

B

D

Un-invaded
Marsh EdgeEcotone Center

Phragmites

Age:
7 yrs

Age:
40 yrs

Age:
3 yrs

Colony 1 Colony 2 Colony 3



 127

was higher than colony 1, and colony 1 was higher than colony 2.  Although significant 

differences exist between the elevations of each colony, the largest difference between elevations 

was 6 cm (Figure 4-3(b)).   

 Peat thickness was significantly greater in the mono-specific Phragmites center than in 

the mono-specific edge Phragmites, ecotone or in un-invaded marsh (Table 4-1; Figure 4-4(a) 

and (b)).  However, peat thickness by community type was dependent on colony (Table 4-1, 

Figure 4-5).  In colony 2 and 3, peat thickness increased with Phragmites age and was 

significantly different between each community type.  Peat thickness in colony 1 also increased 

with Phragmites age, yet, peat thickness in mono-specific Phragmites at the edge of the colony 

and in the center was not significantly different.  When averaged over colony, peat layer in un-

invaded marsh was less than 5 cm thick while peat thickness in the center Phragmites stand was 

over 16 cm.  Peat thickness also varied by colony, with colony 1 (the largest colony) having 5 cm 

thicker peat than either colony 2 or 3 (Figure 4-4(b)).   

Sediment Characteristics 

 Sediment bulk density was significantly highest in the un-invaded marsh (Table 4-2; 

Figure 4-6).  On average, bulk density in the un-invaded marsh was approximately 0.30 g cc-1, a 

third more than bulk density in the oldest Phragmites (0.20 g cc-1).  Bulk density steadily 

decreased with increasing age of Phragmites.  Conversely, percent organic material was 

significantly greatest in the oldest part of each Phragmites colony, and steadily decreased with 

decreasing age of Phragmites and was lowest in the natural marsh (Table 4-2; Figure 4-7).   

Cellulose Decomposition 

Decomposition rates were significantly different between sample dates, community type and 

depth (Table 4-3).  The change in decomposition rates among community types was 
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Figure 4-4(a) and (b).  Peat thickness is reflected by (a) community type and (b) colony.  Error 
bars reflect SE and bars that share letters are not significantly different. 
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Figure 4-5.  Peat thickness by community type and vegetative community.  UM is un-invaded 
marsh, Ec is ectone, Pe is mono-specific Phragmites at the edge and Pc is mono-specific 
Phragmites in the center. 
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Table 4-2.  ANOVA table of sediment characteristics analyzed by community type using PROC 
MIXED.  Bold indicates statistical significance at α = 0.05. 
 

Sediment Characteristics  Bulk Density (g cc-1)  Organic Material (%) 

Source of variation  df  F P  F P 

Community type  3  8.05 0.0013  8.43 < 0.001 

  Note: Block was tested as a random effect. 
 
 
 
 

 
Figure 4-6.  Sediment bulk density by community type.  Error bars reflect SE and bars that share 
letters are not significantly different. 
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Figure 4-7.  Percent organic component of bulk density cores by community type.  Error bars 
reflect SE and bars that share letters are not significantly different. 
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Table 4-3.  ANOVA table of cellulose decomposition analyzed using PROC MIXED and with time as 
a repeated measure.  Bold indicates statistical significance at 0.05 level of significance. 
 

Cellulose Decomposition  

Source of variation  df  F  P 

Time (T)  3  16.29  0.0027 

Community (C)  3  22.93  <.0001 

T x C   9  3.97  <.0001 

Depth (D)  8  9.94  <.0001 

T x D   24  3.01  <.0001 

C x D   24  1.13  0.3019 

T x C x D   72  0.6  0.9966 
     Note: Block was tested as a random effect. 
 

dependent on sample date.  In addition, change in decomposition rates over depth was also 

dependent on sample date (Table 4-3, Figure 4-8(a)).  Cellulose decomposition was lowest in the 

edge of the mono-specific Phragmites when compared to other communities (Figure 4-8(b)).  

Overall, decomposition was significantly higher in August 2001 than in December 2002 (Figure 

4-8).  On two occasions, decomposition was the same between community types (December 

2001 and 2002).  However, decomposition was significantly greater in un-invaded marsh than in 

the ecotone or the edge of mono-specific Phragmites in August 2001.  Decomposition at the 

edge of the mono-specific Phragmites was significantly lower than in un-invaded marsh, the 

ecotone or in the center of the mono-specific Phragmites during the March 2002 sample period 

(Figure 4-8).   

The significant time x depth interaction occurred due to an unexpected increase in 

decomposition rates as depth increased in March 2002 (Figure 4-9).  In both August and 

December 2001, decomposition rates were negatively correlated with depth.  In December 2002,  
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Figure 4-8.  Daily cellulose decomposition (CTSLd-1) by (A) community type and sample date, 
and by (B) community type.  Error bars reflect SE. 
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Figure 4-9.  Daily cellulose decomposition (CTSLd-1) by sample date and depth.  Error bars 
reflect SE. 
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decomposition rates remained constant with increasing depth, with a slight increase in 

decomposition at 7 cm and decreased from that point as depth increased.  The decomposition 

rates in March 2002 initially appeared to follow the same pattern, decreasing with depth; 

however, at 13-cm depth, decomposition rates abruptly increased at 16 and 19-cm depth, and 

then diminished from that point downward (Figure 4-9).   

Temperature was the most important variable in predicting cellulose decomposition and 

explained 55% of the variation in the stepwise multiple regression model (Table 4-4).  In 

addition, pH and water levels also were significant variables and contributed an additional 10 

and 5%, respectively, to the model.  No other environmental variables significantly affected 

decomposition rates at the α = 0.05% level of significance. 

 

Table 4-4.  Variables selected in the stepwise multiple regression on the relationship between 
CTSLd-1 and sediment temperature, marsh elevation, porewater pH, water levels, depth Eh, 
porewater ammonium concentrations and salinity.  Error terms of the final model had 31 degrees 
of freedom.  For decomposition the model was: CTSLd-1 = -9.64 + 0.18 (sediment temperature) 
+ 1.50 (pH) + 0.06 (water level).  Only sediment temperature, porewater pH and water levels 
affected decomposition at α = 0.05 level of significance. 
 

Summary of Stepwise Selection  

Step  Variable Entered  Cumulative r2  F  P 

1  Sediment temperature  0.553  37.11  <0.0001 

2  pH  0.6554  8.62  0.0064 

3  Water level  0.7098  5.25  0.0297 

 

Vegetative Measurements 

For each species in this study, there was a significant vegetative community effect for 

biomass, stem density, stem height and Phragmites basal diameter (Table 4-5).  Cumulative 
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biomass was significantly greater in the ecotone and in the edge of the mono-specific Phragmites 

than in un-invaded marsh (Figure 4-10).  Biomass in the center of the Phragmites colony was not 

significantly different than that in any other community type.  Species composition also changed 

significantly across community types (Figure 4-10).  Un-invaded marsh was comprised of 

Spartina, Distichlis and Schoenoplectus whose combined weight was approximately 1600 g dwt 

m-2 (Figure 4-10).  The ecotone, comprised of both short graminoid species and Phragmites, 

weighed ~2200 g dwt m-2.  Biomass from the edge of mono-specific Phragmites weighed 2400 g 

dwt m-2.  Biomass in the center of the Phragmites colony was 2000 g dwt m-2, and not different 

than un-invaded marsh. 

 When each species was analyzed separately, Spartina, Distichlis and Schoenoplectus 

biomass decreased from un-invaded marsh to the ecotone, and no plants were present within the 

mono-specific Phragmites stand (Table 4-5; Figures 4-11(a-c)).  Both Spartina and Distichlis 

biomass decreased by more than half when growing with Phragmites, while Schoenoplectus 

decreased by a third.  Likewise, Phragmites biomass was a third less in the ecotone when 

compared to biomass from the edge of the mono-specific Phragmites (Table 4-5; Figure 4-

11(d)).  Phragmites biomass in the center was not different than that in the ecotone or the mono-

specific edge. 

 Stem densities also significantly decreased for both Spartina and Distichlis between un-

invaded marsh and the ecotone (Table 4-5; Figures 4-12(a) and (b)).  Spartina stem densities 

decreased by half in the ecotone, and were not present in Phragmites.  Likewise, Distichlis 

densities decreased by two thirds from un-invaded marsh to the ecotone, and also were not 

present in Phragmites.  In contrast, there was no difference between Schoenoplectus densities in 

either un-invaded marsh or in the ecotone, but also was not found in Phragmites (Table 4-5; 
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Table 4-5.  ANOVA table of biomass, stem density, stem height and Phragmites basal diameter as analyzed using PROC MIXED by 
community type.  Bold indicates statistical significance at α = 0.05. 
 

Vegetation  Biomass  Density  Height  Basal Diameter 

Source  df  F P  F P  F P  F P 

Cumulative  3  3.17 0.0384  - -  - -  - - 
Spartina  3  16.51 < 0.0001  29.23 < 0.0001  43.05 < 0.0001  - - 
Distichlis  3  38.74 < 0.0001  49.61 < 0.0001  322.14 < 0.0001  - - 
Schoenoplectus  3  12.78 < 0.0001  10.58 < 0.0001  177.23 < 0.0001  - - 
Phragmites  3  24.64 < 0.0001  110.35 < 0.0001  12.18 < 0.0001  36.84 < 0.0001 

    Note: Block was tested as a random effect. 
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Figure 4-10.  Total cumulative biomass by community type.  Bars demonstrate the cumulative 
contribution of each type of vegetation to total biomass (dry weight / m2) and error bars reflect 
SE.  Bars sharing letters are not significantly different. 
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Figure 4-11(a-d).  Total individual biomass of Phragmites, Spartina, Distichlis and 
Schoenoplectus by community type.  Error bars reflect SE and bars that share letters are not 
significantly different. 
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Figure 4-12(a-d).  Total individual density (m-2) of Phragmites, Spartina, Distichlis and 
Schoenoplectus by community type.  Error bars reflect SE and bars that share letters are not 
significantly different. 
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Figure 4-12(c)).  Phragmites stem densities steadily increased from 0 in un-invaded marsh to 

approximately 80 stems m-2 in the ecotone (Table 4-5; Figure 4-12(d)).  Although Phragmites 

stem density in the edge of the mono-specific stand was not significantly different than in the 

ecotone or the center, densities in the center of the colony were twice that in the ecotone. 

 Stem height was greater in the ecotone for each short graminoid species than in un-

invaded marsh (Table 4-5; Figures 4-13(a-c)).  No stems of any short graminoid species were 

present in the mono-specific Phragmites stand.  Surprisingly, Phragmites stem height was not 

different between the ecotone and the edge of the mono-specific Phragmites (Table 4-5; Figure 

4-13(d)).  However, Phragmites height was lower in the center, or oldest part of the colony.  The 

same trend appeared in Phragmites basal diameter, and also yielded lower diameters in the oldest 

section of the colony (Table 4-5; Figure 4-14). 

Interstitial Measurements 

 Ammonium Concentrations and Nitrogen Mineralization Rates 

Ammonium concentrations were lowest in March 2002 when compared to concentrations 

measured in August 2001, December 2001 and December 2002 (Table 4-6).  The concentrations 

measured on those dates were not different from each other (Table 4-6).  Nitrogen mineralization 

rates, however, were greater in March 2002 when compared to other sample dates (Tables 4-6, 4-

7 and 4-8).  Mineralization rates were lower in December 2001 than in both August 2001 and 

March 2002, while rates measured in December 2002 were only lower than March 2002 (Table 

4-8).   

 Sulfide, Salinity and pH 

Both porewater sulfide and salinity demonstrated significant time effects over the course 

of the study, while the change in pH over time was dependent on the community (Table 4-6).   



 142

 
 
 
 

 
Figure 4-13(a-d).  Average stem height (m) of Phragmites, Spartina, Distichlis and 
Schoenoplectus by community type.  Error bars reflect SE and bars that share letters are not 
significantly different. 
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Figure 4-14.  Basal diameter (mm) of Phragmites stems by community type.  Error bars reflect 
SE and bars that share letters are not significantly different. 
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Table 4-6.  ANOVA table of ammonium concentrations, daily nitrogen mineralization rates, sulfide concentrations, porewater salinity 
and pH analyzed using PROC MIXED with time as a repeated measure.  Bold indicates statistical significance at α = 0.05. 
 

Environmental Variables  Ammonium 
(µM)  

Nitrogen 
mineralization 

(µM day-1) 
 Sulfide  

(µM)  Salinity  
(ppt)  pH 

Source  df  F P  F P  F P  F P  F P 

Community (C)  3  1.02 0.4462  0.51 0.6863  0.88 0.4518  0.82 0.5283  4.91 0.047 

Time (T)  3  15.1 <0.0001  19.36 <0.0001  2.77 0.0445  42.15 <0.0001  27.66 <0.0001 

C x T  9  1.83 0.077  1.47 0.1745  0.86 0.5616  1.75 0.0848  4.01 0.0002 

Note: Community refers to un-invaded marsh, ecotone, edge of mono-specific Phragmites and center of mono-specific Phragmites colony.  Block  
was tested as a random effect. 

 
 
Table 4-7. ANOVA table of surface and depth Eh measurements, water levels and sediment temperature analyzed using PROC MIXED 
with time as a repeated measure.  Block was tested as a random effect for this analysis.  Bold indicates statistical significance at α = 
0.05. 
 

Environmental Variables  Eh 
(mV-Surface)  Eh 

(mV-Depth)  Water Levels (cm)  Sediment 
Temperature (ºC) 

Source  df  F P  F P  F P  F P 

Community (C)  3  0.6 0.6394  0.42 0.7448  0.15 0.9246  0.57 0.6540 

Time (T)  3  5.25 0.0066  0.98 0.4173  148.53 <0.0001  284.89 <0.0001 

C x T  9  0.65 0.7461  0.35 0.9474  1.48 0.1735  0.75  0.6645 

Note: Community refers to un-invaded marsh, ecotone, edge of mono-specific Phragmites and center of mono-specific Phragmites 
 colony.  Block was tested as a random effect. 
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Table 4-8. Means of environmental measurements on each sample date.  Means are ± standard error and measurements that share 
letters are not significantly different.  
 

Variables  n  August 2001  December 2001  March 2002  December 2002  P 

Ammonium 
(µM)  24  8.0833 ± 0.8100 (a)  8.3433 ± 0.4131 (a)  4.1633 ± 0.5779 (b)  9.5225 ± 2.5956 (a)  < 0.0001 

N-mineralization 
(µM d-1)  24  1.8125 ± 0.2185 (b)  0.7745 ± 0.1445 (c)  2.7474 ± 0.2793 (a)  1.2180 ± 0.1698 (bc)  < 0.0001 

Sulfide 
(µM)  36  2.489e-5 ± 1.379e-5 

(ab)  2.253e-5 ± 3.970e-6 
(a)  3.610e-7 ± 1.650e-7 (c)  7.810e-6 ± 1.050e-6 

(b)  0.0445 

Salinity 
(ppt)  36  15.3889 ± 0.7141 (a)  11.6389 ± 0.5243 (c)  9.5556 ± 0.6600 (d)  13.9722 ± 0.2745 (b)  < 0.0001 

pH  36  5.70 ± 0.093 (d)  6.33 ± 0.038 (a)  6.21 ± 0.062 (ab)  5.96 ± 0.049 (c)  < 0.0001 

Surface Eh  
(mV)  108  234.35 ± 34.39 (a)  -38.62 ± 9.83 (b)  149.91 ± 20.58 (a)  19.86 ± 12.75 (b)  0.0066 

Water levels  
(cm)  24  8.1708 ± 0.8646 (a)  7.0792 ± 0.9590 (a)  -2.7292 ± 0.7691 (b)  7.6522 ± 0.8029 (a)  < 0.0001 

Sediment Temp 
(ºC)  24  26.21 ± 0.1201 (a)  16.75 ± 0.0796 (b)  17.08 ± 0.4812 (b)  11.917 ± 0.3803 (c)  < 0.0001 
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Sulfide concentrations in December 2001 were significantly higher than those in both 

March and December 2002 (Table 4-8).  Concentrations measured in August 2001 were only 

significantly greater than those in March 2002, and not statistically different from concentrations 

in December 2001 or 2002.   

Porewater salinities were highest in August 2001 and different between each sample date 

(Table 4-8).  Salinity in December 2002 was lower than in July 2001 and higher than in 

December 2001.  Salinities were lowest in March 2002.  

Although pH only fluctuated between 6.48 and 7.34 throughout the study, there was a 

significant time x community interaction (Table 4-6).  Mono-specific Phragmites at the edge and 

in the center of each colony had lower porewater pH than un-invaded marsh and the ecotone in 

March 2002 (Figure 4-15; Table 4-6).  In contrast, only mono-specific Phragmites at the edge 

demonstrated a lower pH when compared to un-invaded marsh, the ecotone and the mono-

specific Phragmites in the center in August 2001.  There were no differences in porewater pH 

between community type in either December 2001 or December 2002.  Although sulfide levels 

were different between sample periods, concentrations failed to reach a biologically significant 

level (i.e., growth limiting) at any time during the study (Table 4-6).   

 Sediment Eh, Water Levels and Temperature 

Although surface Eh did significantly vary during the study, Eh did not differ with community 

types (Table 4-7 and 4-8).  Surface Eh in both December 2001 and 2002 was significantly lower 

than in July 2001 and March 2002 (Table 4-8).  There was no effect of either time or community 

type on redox at 15-cm depth (Table 4-7).  When compared between surface and depth across all 

community types and sample dates, surface Eh (88 mV ± 11) was higher than at 15-cm depth (61 

mV ± 6; p = 0.0384; F = 4.30; n = 432).  Hence, soils within the un-invaded marsh, ecotone and  
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Figure 4-15. Porewater pH interaction between sample date and community type.  Error bars 
reflect SE. 
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in the edge and center of Phragmites colonies were moderately reduced to reduced (Patrick 

1972). 

Water level was lowest only in March of 2003 (Tables 4-7 and 4-8).  In July and 

December 2001 and December 2002 however, water levels remained between 6 and 8 cm above 

the marsh.  Water levels did not differ between vegetative communities. 

 Likewise, sediment temperature did not differ between community types, but did change 

over time (Table 4-7).  Sediment temperature was highest in July 2001 when compared to other 

sample dates while December 2002 was lowest (Table 4-8).   Sediment temperatures in 

December 2001 and March 2002 were not different from each other although they were lower 

than July 2001 and higher than December 2002.  

Discussion 

Phragmites clearly demonstrated its role as an ecosystem engineer by increasing true 

elevation, peat accumulation and organic matter concentration of the marsh sediment when 

compared to un-invaded brackish marsh in Southwestern Louisiana.  As a result of increased 

organic accumulation, soil bulk density within Phragmites stands was lower relative to un-

invaded marsh as was soil decomposition rates.  Phragmites productivity in the edge of the 

mono-specific Phragmites also exceeded that in the un-invaded marsh, and is likely responsible 

for the greater accumulation of organic material and positive elevation gain.  Yet Phragmites 

invasion had little effect on interstitial variables when compared to un-invaded natural marsh.  

Although interstitial variables were within the range reported in other studies, it is likely that 

marsh management practices in the study area muted potential differences that might have 

existed otherwise between vegetative communities. 
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Phragmites as an Ecosystem Engineer 

The ecological distinctiveness of an invading species, relative to the species that exist in a 

community, is an important factor determining the nature and the degree of the ecological impact 

(Cox 1999, Ehrenfeld 2001).  Phragmites often grows to heights in excess of 3 m while the 

native short graminoid species in brackish marshes seldom exceed 1 m, and therefore invasions 

are readily apparent.  Unlike short graminoid species, Phragmites stems can remain standing for 

up to 4 years after senescence (Haslam 1972).  Once they fall, stems decompose slowly and 

accumulate as organic matter (Windham 2001).  Belowground, Phragmites rhizomes grow to 

depths of 1 m and can be twice as productive as short graminoid species, which exhibit an 

effective rooting zone of only 30 cm (Mitsch and Gosselink 1993, Burdick et al. 2001, Windham 

2001).  Phragmites roots adventitiously from nodes along the stem when subjected to high water 

levels, further contributing to organic matter accumulation at the sediment surface.  With such 

obvious differences between the growth morphology of Phragmites and short graminoid species 

in un-invaded marshes, it is no surprise that ecosystem processes change as a result of 

Phragmites invasion. 

Soil Development and Elevation 

One primary ecosystem process affected by Phragmites invasion was soil development 

and elevation change.  The increased productivity of Phragmites relative to un-invaded marsh 

had profound effects on litter and organic matter accumulation (Figure 4-4).  Marsh sediments 

beneath Phragmites had greater organic matter concentration, lower bulk density and much 

thicker peat that in un-invaded marsh (Figures 4-4(a), 4-6 and 4-7).  Other studies have shown 

both increased litter accumulation rates and positive correlations between sedimentation rates 

and Phragmites dominated communities (Windham 2001, Leonard et al. 2002, Rooth et al. 



150 

2003).  In the present study, the low bulk densities and high percentage of organic matter in the 

center of the mono-specific Phragmites community (~40 yr), combined with the thickest peat 

layer, demonstrates that Phragmites accumulates more organic matter than short graminoid 

species in un-invaded marshes.  Peat thickness was also based on the size of the Phragmites 

colony.  Colony 1, with a diameter of 145 m, had the thickest peat compared to colonies 2 and 3, 

with 100 and 90 m diameters, respectively (Figure 4-4(b)).  Peat thickness in the larger colony 

was 5-cm thicker than that in the smaller colonies.  Therefore it seems apparent that a larger 

stand of Phragmites will have better developed and greater depth of peat than smaller stands. 

The most striking evidence for Phragmites role as an ecosystem engineer was its effect 

on marsh elevation (Figure 4-3(a)).  Marsh surface elevation in Phragmites was nearly 10 cm 

higher than that in un-invaded marsh, 6 cm higher than the ecotone and nearly 3 cm greater than 

at the edge of mono-specific Phragmites.  In addition, the elevation in the ecotone, which was 

comprised of 50% Phragmites, was 4 cm greater than un-invaded marsh.  Based on the estimated 

ages for the three colonies (Chapter 2), I calculated the annual increase in elevation relative to 

the un-invaded marsh.  When calculated as a per year rate, the elevation increases in the center 

mono-specific Phragmites (~40 yrs old) is approximately 0.28 cm yr-1, the edge of the mono-

specific Phragmites (~7 yrs old) was 1.02 cm yr-1 and 1.31 cm yr-1 in the ecotone (~3 yrs old).  

The average elevation increase in the un-invaded marshes in RWR are 0.23 cm yr-1 (Phillips 

2002).  These rates indicate that initial increases in elevation occur rapidly once Phragmites 

invades and slows as Phragmites matures. 

In addition to colony age, inorganic sediment input can also affect marsh elevation.  The 

brackish marsh in Price Lake Unit is hydrologically restricted from coastal waters by low 

hurricane levees and fixed-crest weirs (Wicker 1983).  As a result, managed marshes do not 
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typically receive inorganic sediment input (Cahoon 1994, Bryant and Chabreck 1998, Perez and 

Cahoon 2004).  Nutrient supply has been positively correlated with sediment supply (DeLaune 

1979, Miller 1983).  Therefore, a reduction in inorganic sediment supply could result in lower 

plant productivity and slow organic matter formation, ultimately decreasing organic matter 

accretion rates and marsh elevation (DeLaune and Patrick 1979, Nyman et al. 1993).  However, 

Phragmites is likely to remain highly productive and continue contributing to marsh surface 

elevation even in the absence of nutrients supplied with inorganic sediment.  Phragmites active 

root zone extends at least 70 cm deeper into marsh sediments than that of short graminoid 

species (~30 cm, Mitsch and Gosselink 1993), and can likely acquire nutrients that are 

unavailable to short graminoid species.  Thus, it seems unlikely that low nutrient levels as a 

result of decreased inorganic sediment supply will affect Phragmites productivity or reduce 

organic matter accumulation in Phragmites-dominated marshes. 

In the absence of inorganic sediment supply, the surface elevation of managed marshes is 

generally built up by the deposition of peat and maintained by shallow permanent flooding 

(Hatton 1983, Wicker et al. 1983, Flynn et al. 1995).  Therefore, the biomass production of the 

plant communities will affect the rate of elevation gain and water level will limit maximum 

elevation.  Within the center mono-specific Phragmites community, peat thickness was 11 cm 

greater than in un-invaded marsh (Figure 4-4), and resulted in an elevation gain of almost 10 cm 

over un-invaded marsh (Figure 4-3).  Although elevation gain occurred in the center mono-

specific Phragmites at a rate of approximately 0.28 cm yr-1, the approximate rate of elevation 

increase in edge of the mono-specific Phragmites (~7 yrs old) was 1.02 cm yr-1.  In an un-

invaded managed marsh at RWR, Phillips (2002) reported average elevation increases of 0.17 

cm yr-1 , while other studies in un-invaded managed marshes have recorded similar elevation 



152 

increases of 0.34 cm yr-1 (Perez and Cahoon 2004).  It is apparent that Phragmites invasion 

accumulates more peat than un-invaded marsh and results in more rapid elevation gain than the 

un-invaded marsh.  In addition, permanent flooding of the marsh surface will likely maintain 

elevation gain.  The study area is passively managed to prevent excessive drainage of the marsh 

and marsh ponds during periods of sustained low tides (Wicker et al. 1983).  As a result, 

permanent flooding prevents the collapse of organic soils by oxidation/decomposition and can 

prevent soil shrinkage, and thereby help maintain marsh surface elevation (Nyman and DeLaune 

1991, Perez and Cahoon 2004).   

MARSH PLANT BIOMASS 

Of all the species in this study, Phragmites produced the most biomass.  Even in the 

ecotone, Phragmites biomass was 25-30 % greater than in the un-invaded marsh (Figures 4-11(a-

d)).  Cumulative biomass in the ecotone was approximately 2200 g dry wt m-2, almost 600 g 

more than the un-invaded marsh (Figure 4-10).  When considered separately from the other 

species, Phragmites biomass in the ecotone was equivalent to the combined biomass of short 

graminoid species in the un-invaded marsh, and reached the greatest biomass in the mono-

specific edge (~800 g m-2 more than in un-invaded marsh).  Surprisingly, Phragmites biomass in 

the center of the colony (~40 yrs old) was not greater than biomass in the un-invaded marsh.  

Although Phragmites biomass in the mono-specific center of the colonies was similar to that 

which Windham and Lathrop (1999) found in mature Phragmites stands in Southern New Jersey 

(~2000 g m-2), biomass from their adjacent un-invaded marsh was much less than in the un-

invaded marsh in this study (~200 g m-2 compared to ~1600 g m-2).  There was a corresponding 

increase in stem density with increasing age of the Phragmites (Figure 4-12(d)), yet both stem 

height and basal diameter decreased with age (Figure 4-13(d) and 4-14).  Phragmites dry weight 
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was positively correlated with basal diameter and height (Stanton, unpublished data).  Therefore, 

lower aboveground biomass in the center mono-specific Phragmites in conjunction with smaller 

basal diameter is not surprising when compared to mono-specific Phragmites at the edge of the 

colony. 

Even though dead Phragmites leaves and stems were found incorporated into the peat in 

the mono-specific Phragmites community types, belowground productivity likely has a greater 

affect on organic matter accumulation and elevation gains than does litter-fall.  For example, 

aboveground biomass in the oldest Phragmites stands was not statistically greater than 

aboveground biomass from the un-invaded marsh (Figure 4-10).  Although Phragmites litter may 

decompose slower relative to the short graminoid species in the un-invaded marsh, no 

differences in decomposition rates were found between un-invaded marsh and the ecotone 

(Figure 4-8(b)).  Furthermore, the significant increase in elevation observed in the ecotone 

relative to the un-invaded marsh would suggest a mechanism other than aboveground litter 

accumulation since Phragmites has only been present in portion of the marsh for approximately 

3 years (Figure 4-3(a), Chapter 2).  Although not measured in this study, Windham (2001) 

reported that Phragmites belowground biomass was nearly twice as much as Spartina patens 

(1368 g m-2 vs. 757.37 g m-2).  Furthermore, the distribution of Phragmites belowground tissue 

extended at least 40 cm below that of S. patens and produced 200 g m-2 at the 40-50 cm depth 

interval (Windham 2001).  This suggests that belowground productivity may have a greater 

impact on net marsh surface elevation than the deposition of organic material from aboveground 

production (Paille 1991), which is true for other high organic wetlands (Turner et al. 2001, 

McKee 2004). 
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CELLULOSE DECOMPOSITION RATES AND PHRAGMITES INVASION 

There were strongly significant community effects on cotton decomposition rates in this 

study.  Soil decomposition rates can affect peat accumulation and organic matter concentrations.  

Therefore, decomposition rates can affect marsh communities dependent on peat accumulation 

for positive elevation gain.  Decomposition rates were measured using the cotton strip technique, 

(Maltby 1988).  Although plant litter is composed of a complex mixture of different 

carbohydrates, including cellulose, lignin, and tannins, cotton strips are comprised primarily 

cellulose.  The simplified structure of cotton strip is useful in measuring general cellulolytic 

microbial activity, making comparisons between experimental treatments more uniform and 

repeatable (Mendelssohn et al. 1999, Larson 2004).  The mono-specific Phragmites community 

at the edge of the colony had a strong impact on decomposition rates (Table 4-3; Figures 4-8 and 

4-9) and clearly demonstrated the lowest cellulose decomposition rates when compared to other 

community types (Figure 4-8(b)).  However, the effect of community type on cellulose 

decomposition was dependent on sample time.  This response, however, was affected by 

sediment temperatures as a result of changing seasons (Table 4-4).  Although pH and water 

levels were also correlated with decomposition, each contributed 10 and 5% to the model while 

temperature accounted for 55%.  Because temperature increases metabolic activity, 

decomposition rates increase with increasing sediment temperatures (French 1988).  The lowest 

decomposition rates correlated with the lowest sediment temperatures (December 2002) and vice 

versa (August 2001).  In addition, plant litter quality can also influence decomposition rates 

(Windham 2001).  When compared to Spartina patens, carbon to nitrogen ratios in Phragmites 

fresh litter is almost two times greater.  Thus, poor quality litter produced by Phragmites relative 

to un-invaded marsh could result in slower decomposition rates (Windham 2001). 
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Decomposition rates also decreased as depth increased (Figure 4-9).  Other studies have 

observed this trend, and suggest that increased decomposition rates at the surface indicate greater 

oxygen availability (Mendelssohn et al. 1999, Larson 2004, Mendelssohn and Slocum 2004), 

while decreases in decomposition at increasing depths have been attributed to more reducing 

conditions at depth (Maltby 1988) or lower soil fertility at increasing depths (Schipper and 

Reddy 1995).  When decomposition rates were examined by sample date and depth, the 

decomposition profile in March actually increased at 16 and 19-cm depth.  Since decomposition 

is a result of microbial activity, this increase in decomposition at that depth may have been 

stimulated by a combination of both increased oxidation of the rhizosphere, or exudates from 

increased root activity during spring growth stimulating microbial activity (Howarth and Hobbie 

1982, Lawson 1988, Larson 2004).  The low water levels during that time period may have 

accelerated decomposition.  However, the drained portion of the soil profile did not correspond 

to the depth where increased decomposition was measured.   

Interstitial Chemical Status 

Porewater pH was the only interstitial variable affected by Phragmites invasion (Table 4-

6).  However, this response was also dependent on time (Table 4-6).  Although pH was lower in 

the mono-specific Phragmites edge and center community in March 2002 relative to the un-

invaded marsh and the ecotone, those differences were not biologically significant.  Only in 

August 2001 was the difference in pH between the edge mono-specific Phragmites and the other 

community types biologically significant (Figure 4-15).  Phragmites invasion had no effect on 

other interstitial variables relative to un-invaded natural marsh.  Although other studies have 

shown Phragmites to have significant effects on sulfide  and ammonium concentrations, nitrogen 

mineralization rates, porewater pH and salinities, sediment redox potential (Eh – both surface 
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and depth), water table level, and sediment temperatures (Chambers 1997, Windham and 

Lathrop 1999), these effect were not evident in this study (Tables 4-6, 4-7 and 4-8).  The only 

differences found between interstitial measurements were between sample dates (Table 4-3) with 

the exception of pH, where an interaction between community type and sample date was present 

(Figure 4-3).  Porewater ammonium concentrations were lowest in March 2001, and likely due to 

increased uptake resulting from the onset of spring growth.  Ammonium concentrations 

measured in this study for Phragmites ranged from 4.16 to 9.52 µM and are nearly identical to 

those measured in a Phragmites community in a Connecticut salt marsh (Chambers 1997).  

Conversely, nitrogen mineralization rates were highest in March 2001, and were within the 

ranges reported in a Phragmites community in a Mid-Atlantic brackish marsh (Windham and 

Ehrenfeld 2003).  Sulfide concentrations were different between sample dates, but did not reach 

a biologically significant level at any time.  Likewise, porewater salinities differed among 

sample dates, but did not reach a biologically inhibiting level for either Phragmites or the other 

species in this study. 

Although interstitial variables were within the range reported in other studies, it is likely 

that marsh management practices in the study area muted potential differences between 

vegetative communities.  Marsh management stabilized water levels throughout the study area, 

and as a result, water levels were not different between sample periods except on one date (Table 

4-8).  Furthermore, low porewater salinities reflect decreased tidal exchange with saline coastal 

waters. 

The Cascading Effects of Phragmites Invasion 

The increased Phragmites biomass through taller culms and a deeper active rooting zone 

make Phragmites a dominant competitor when invading short graminoid marshes (Figures 4-11 
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and 4-13(a-d)).  Its taller growth form increases light capture efficiency for photosynthesis, while 

a deeper and larger rhizome network captures belowground resources not available to shallow-

rooted graminoid species.  Short graminoid species exhaust belowground resources when 

competing with Phragmites by increasing stem height, resulting in lower stem densities and less 

biomass when compares to un-invaded marsh (Figures 4-11(a-c), 4-12(a-c) and 4-13(a-c)).  

Ultimately, short graminoid species exhaust belowground reserves and perish, giving way to a 

mono-culture of Phragmites (Figure 4-10).  

The shift in community structure from un-invaded short graminoid marsh to mono-

specific Phragmites has an obvious impact on marsh surface elevation.  Phragmites biomass is 

among the highest recorded in coastal marshes, with aboveground biomass of 2000 g m-2 not 

uncommon in invaded marshes and with this study reporting nearly 2500 g m-2.  Phragmites 

belowground productivity is twice that reported for Spartina patens communities (Windham 

2001, Windham and Ehrenfeld 2003).  This is reflected in immediate elevation gains of nearly 4 

cm over un-invaded marsh in less than 5 years, and elevation gains of 10 cm are evident after 

nearly 40 years (Figure 4-3).  In addition to the belowground contribution to elevation gain, 

standing culms can increase inorganic sedimentation rates (Rooth and Stevenson 2000), further 

raising marsh surface elevation.  Although the transition of un-invaded short graminoid marshes 

to Phragmites mono-cultures immediately affects the physical nature of brackish marshes, the 

vastly greater productivity is likely to have a greater affect on faunal abundance and utilization 

as well as energy flow through the ecosystem. 

Since coastal marshes serve as important habitats for shorebirds and commercial species 

(Mitsch and Gosselink 1993), modification resulting from Phragmites invasions could change 

faunal use pattern and community structure.  Several studies have found contrasting affects of 
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Phragmites invasion on larval and juvenile utilization relative to un-invaded marsh (Fell et al. 

1998, Able and Hagan 2000, Angradi et al. 2001, Meyer et al. 2001, Jivoff and Able 2003, 

Raichel et al. 2003).  Phragmites-dominated marshes were not favored by blue crabs and some 

species of larval fish (Able and Hagan 2000, Jivoff and Able 2003, Raichel et al. 2003).  In 

contrast, both Meyer et. al (2001) and Fell et. al (1998) found nekton usage between Spartina 

alterniflora and Phragmites-dominated marsh was indistinguishable.  Furthermore, studies 

examining shorebird success found that Virginia rail abundances declined with the invasion of 

Phragmites (Benoit and Askins 1999), while invasion has had no effect on nesting success 

(Parsons 2003).  These contrasting results suggest that the effect of Phragmites invasion will not 

be consistent over all aspects of coastal marsh ecology and will require a case by case approach 

to be fully understood.  

Although Phragmites often forms monocultures and reduces wildlife usage in some cases 

relative to un-invaded marsh, increasing marsh elevations will likely increase the longevity of 

deteriorating coastal marshes.  This finding holds particular relevance for coastal Louisiana.  Due 

to myriad of factors including sediment starvation, compaction and subsidence, salt water 

intrusion and sea-level rise, annual Louisiana wetlands losses are exceeding 65 km2, the greatest 

wetland loss rates in North America (Pezeshki et al. 1987, Penland et al. 1989, Flynn et al. 1995, 

Grace and Ford 1996, Webb and Mendelssohn 1996).  Thus, the increasing prevalence of 

Phragmites in coastal Louisiana may contribute to positive marsh elevation gain and potentially 

slow local rates of wetland loss due to sea-level rise.  

Conclusion 

Phragmites has clearly demonstrated its role as an ecosystem engineer while invading 

this Louisiana brackish marsh.  Marsh surface elevation is increased immediately with 
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Phragmites invasion, and rates of elevation gain were at their peak within 7 years.  Although the 

aboveground productivity shown in Phragmites communities is far above that produced by short 

graminoid species, it is likely that belowground production has a greater impact on net marsh 

surface elevation than the deposition of organic material from aboveground production.  The 

contribution of Phragmites belowground production to marsh soil development and surface 

elevation has not been quantified.  Additional studies examining these relationships would not 

only benefit marsh managers, but also further increase understanding of invading species and the 

ensuing impacts on ecosystem processes.  
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