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ABSTRACT 
 
 

Naive Prey Versus Nonnative Predators: A Role for  

Behavior in Endangered Species Conservation 
 
 

by 
 
 

Stephanie A. Kraft, Master of Science 

Utah State University, 2009 
 
 

Major Professor: Dr. Todd A. Crowl 
Program: Ecology 
 
 
 Fish are one of the most imperiled groups of vertebrates worldwide. Threats to fish 

fall into one of four general categories: physical habitat loss or degradation, chemical 

pollution, overfishing, and nonnative species introductions. Nonnative predatory fish 

often have a devastating impact on native prey, especially with endemic fish, whose 

restricted distribution and often limited evolutionary history with predators make them 

particularly susceptible to nonnative predators. One reason nonnative fish are often so 

efficient predators is that the native fish do not recognize the predator as a threat. 

Although many studies have examined the role of predator odor recognition, no fish have 

been shown to possess an innate recognition of the odor of predators unless they share a 

close co-evolutionary history. Many fish learn to identify novel predators through 

exposure to a predator’s odor in conjunction with a conspecific alarm cue. Alarm cues are 

substances that are stored in the epidermis of many fish and are released when skin cells 

are broken. Exposure to novel predator odor in conjunction with alarm cue does not 
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necessarily require a fish to survive a close encounter with a predator to be able to learn 

to recognize the predator. Here I show that it is possible to train hatchery-raised fish 

(June sucker, Chasmistes liorus) to recognize a nonnative predator odor (largemouth 

bass, Micropterus salmoides) through exposure to the odor of a predator that has eaten 

June sucker. I also show that this training can translate into higher survival in subsequent 

encounters with predators. I propose that training hatchery-raised fish prior to stocking 

may increase survival of hatchery-raised fish through anti-predator behavior.  

(77 pages) 
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INTRODUCTION 

 The loss of native species is a subject of concern for conservationists and managers 

worldwide. Fish represent one of the most specios vertebrate groups on the planet 

(Helfman et al. 1997). Over the last few decades the number of threatened and 

endangered fish has increased dramatically. The number of fish listed as threatened, 

endangered or extinct on the International Union for the Conservation of Nature’s 

(IUCN) Red List has gone from 734 in 1996 to 1275 in 2008. Some estimates suggest 

35% of fish native to North America are threatened (Helfman 2007). Of 377 vertebrate 

species and subspecies on the United States Endangered Species List, 138 are fish (U.S. 

Fish and Wildlife Service 2008). Freshwater fish are particularly threatened (Bruton 

1995). In North America alone, there have been at least 42 documented extinctions of 

freshwater fish species and subspecies (Dextrase & Mandrak 2006).  

 The decline of freshwater fish can be linked to four general threats: physical habitat 

degradation and alteration, chemical pollution, overexploitation, and nonnative species 

introductions (Warren & Burr 1994; Bruton 1995). Nonnative species can affect native 

fish in many ways, including habitat alteration, competition, introduction of disease, 

hybridization, and predation (Dextrase & Mandrak 2006). Predation is often the most 

harmful effect of nonnative fish. Often when nonnative predatory fish become established 

in freshwater systems, the result is rapid population decline in native fish, sometimes 

leading to local extinction (McIntosh et al. 1994; Lodge et al. 1998; Mills et al. 2004).   

 The negative effects of nonnative species can be exaggerated in freshwater systems 

due to isolation and lack of refuge for native species. Nonnative predators are particularly 
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effective in reducing populations of endemic fish (Bruton 1995). Freshwater fish exhibit 

high levels of endemism due to the difficulty of dispersion within and between 

watersheds. The isolation that facilitated the evolution of endemic species may also 

explain why they are so susceptible to nonnative predators. The limited distribution of 

endemic fish makes it likely that the whole population will be affected by a single event 

(Angermeier 1995; Lodge et al. 1998). Endemic fish have often evolved in the presence 

of a stable, defined community. A defined community, or a community which changes 

very little over evolutionary time, leads to a naiveté towards nonnative predators and 

predation strategies (Cox & Lima 2006). Failure to recognize a potential predator usually 

has fatal consequences (Lind & Cresswell 2005). The devastation of two-thirds of Lake 

Victoria’s endemic cichlids by the introduced Nile perch is one of the most dramatic 

examples of the effects of introduced species in the world (Witte et al. 1992).  

 Increasingly, conservation and management plans include restocking programs as a 

recovery tool (Marsh & Brooks 1989; Rakes et al. 1999; Bearlin et al. 2002). The goal of 

these programs is to supplement natural spawning populations while habitat is restored 

and improved and nonnative species control activities are pursued. Unfortunately, 

removal of nonnative predators is not feasible in many water bodies where threatened 

native fish occur. The inability to remove nonnative predators creates a situation where 

many stocked fish are immediately lost to predation (Marsh & Brooks 1989). Losses of 

stocked fish due to predation decrease the effectiveness of restocking as a recovery tool. 

The behavior and physiology of the animals we are trying to conserve may provide 

important insights into methods to decrease loss of stocked fish to predation.  
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  Aquatic organisms, much like their terrestrial counterparts, identify predation 

threat through their senses. Although all senses play a role in the identification of 

predators, odors often play a large role due to their ability to convey species and threat-

specific information over long distances. Fish, specifically, use olfaction to identify 

predation threat in two ways: through recognition of the odor of a predator, and 

conspecific chemical alarm cues. Chemical alarm cues were first discovered by Karl von 

Frisch in 1938. Through a series of experiments, von Frisch determined that the fish 

olfactory system mediated the reaction and the alarm substance was stored in the skin 

(von Frisch 1938, 1941). These alarm cues are released when the skin is broken, often 

during a predation event (Pfeiffer 1977). The release of an alarm substance allows 

conspecifics to initiate anti-predator defenses and to learn to identify new predators. This 

learned association can occur through both visual and chemical recognition of the novel 

predator (Brown 2003).  
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PREVIOUS WORK—LITERATURE REVIEW 

 Predator-prey interactions have been the subject of countless studies (Vermeij 

1994). Predator-prey interactions can play a critical role in structuring communities (Sih 

et al. 1985), and the presence of predators has been cited as a catalyst for morphological 

and evolutionary change in prey species (Bronmark & Miner 1992; Laforsch et al. 2006). 

Prey species in both terrestrial and aquatic systems are constantly balancing the risk of 

predation with their need to forage and reproduce (Lima & Dill 1990; Lind & Cresswell 

2005). The most successful individuals will maximize their fitness by allocating the most 

time to foraging and reproduction while effectively avoiding predation. For the optimal 

allocation of time to occur, prey species must have a reliable way of identify the presence 

of predators and posses effective antipredator behaviors once a predation threat is 

perceived (Abrahams 2006).  

 Prey species identify the presence of predators through their senses: visual, 

olfactory, auditory, gustation, tactile, and electroreception (Dominy et al. 2004; 

Abrahams 2006). Although most prey species rely on a combination of the information 

received by several senses to form a more accurate picture of the current predation threat, 

the main senses that each species relies on depend on the specific evolutionary history of 

the species as well as the environment in which it lives. In aquatic systems, visual and 

chemosensory cues often relay the most accurate information (Abrahams 2006); 

therefore, much research has been focused on determining the role of each sense in 

determining antipredator behavior (Dodson et al. 1994; Chivers & Smith 1998; Kats & 

Dill 1998; Dicke & Grostal 2001; Brown 2003).  
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  Both chemical and visual cues have advantages and disadvantages. Visual cues 

can relay accurate species and threat-specific information, but often only over relatively 

short distances. Visual cues become nearly ineffective for nocturnal organisms or those 

that live in structurally complex or turbid environments. Additionally, the distance at 

which an individual may rely on visual information is directly related to the size of the 

eye (Abrahams 2006). In aquatic systems, most prey species are considerably smaller 

than their predators (Persson et al. 1996). The size difference typically results in prey 

species being at a distinct visual disadvantage to their predators.  

 Chemical cues, including both kairomes and pheromones, can convey species and 

threat-specific information over relatively large distances (Dodson et al. 1994; Chivers & 

Smith 1998; Abrahams 2006). Kairomones are commonly defined as any cues that 

transfer information between species and confer beneficial information to the receiver but 

not necessarily to the sender. Kairomones are typically passively released and are often 

referred to simply as odors (Dodson & Hanazato 1995; Chivers & Smith 1998). 

Pheromones are intended for intraspecific communication, are often actively released 

(though not always), and often provide a benefit to both the sender and receiver (Chivers 

et al. 1996a; Hamdani & Døving 2007). The physics of the aquatic environment results in 

dramatically different diffusion and persistence rates than those in terrestrial systems 

(Abrahams 2006). As a consequence, aquatic environments are often full of chemical 

cues, and false alarms can be common. For chemical cues to be effective, prey species 

must be able to accurately identify potential predators and assess the risk that potential 

predators pose at any given moment.  
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 Many prey species across a wide range of taxa have developed a similar strategy for 

accurately identifying predation risk: damage-released alarm cues (Dodson et al. 1994; 

Chivers & Smith 1998; Kats & Dill 1998, Table 1). In fish, damage-released alarm cues 

(hereafter referred to as alarm cues) were first discovered by Karl von Frisch in 1938. 

Von Frisch discovered alarm cues accidentally while conducting a study on the auditory 

sense of a minnow, Phoxinus phoxinus (von Frisch 1938; Døving et al. 2005). He noticed 

that other fish exhibited a strong fright response to fish he had marked by placing small 

cuts on the caudal section. Through a series of experiments, olfaction was determined to 

mediate the signal, and the cue was found to reside in the epidermis (von Frisch 1938, 

1941). Von Frisch termed the alarm substance schreckstoff and the alarm response 

schreckreaktion (Døving et al. 2005). Although schreckstoff/schreckreaktion specifically 

refers to the alarm cues found in fish in the super-order Ostariophysii, alarm cues have 

been found in many species outside of this super-order (Table 1). 

 Immediately after discovery of the alarm cue, researchers attempted to identify the 

specific chemical responsible for inducing the fright reaction observed. Pfieffer (1960) 

discovered the presence of specially shaped club cells in the epidermis of fish which had 

been shown to possess alarm cues. It is thought that the active alarm substance is stored 

in these club cells and released when the skin is broken, as in a predation event (Døving 

et al. 2005, Figure 1). Pfieffer and others have attempted to identifying the active 

compound that induces a fright response, and many substances have been proposed, but a 

consensus has yet to be reached (Pfeiffer 1963; Pfeiffer et al. 1985; Brown et al. 2000; 

Brown et al. 2003; Døving et al. 2005). One reason researchers may have had such 

difficulty determining a single active compound in the alarm substance is the species 
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specificity of the alarm cue (Schutz 1956). Although some species recognize 

heterospecific alarm cues, the alarm cues recognized tend to originate from either closely 

related species, or species with a close evolutionary history (Mathis & Smith 1993; 

Chivers et al. 1995b; Chivers & Smith 1998; Mirza & Chivers 2001; Dalesman et al. 

2007).  

 Although alarm cues are helpful to conspecifics of the releaser, on first glance they 

seem to provide little to no benefit to the individual releasing the cue. While the 

ostariophysan alarm cue was traditionally touted as the classic example of a fish alarm 

pheromone, because of the apparent lack of benefit to the releaser there has been 

considerable debate whether the substance is actually a pheromone (Wilson & Bossert 

1963; Magurran et al. 1996; Smith 1997; Chivers & Smith 1998; Abrahams 2006).  

 Regardless of whether or not the alarm cue is a pheromone, it can facilitate accurate 

identification of potential predators in two specifics ways. Fish can learn to recognize the 

odors of novel predators through exposure to alarm cues either during direct release of 

alarm cue during a predation event or as the predator exudes alarm cue after consumption 

of an alarm cue-producing organism. The potential for fish to use alarm cue to learn 

novel predator odors was recognized not long after their initial discovery (Göz 1941). 

After Goz’s initial study, not much attention was paid to alarm cue-assisted learning for 

over 40 years. In recent years there has been intense interest in investigating the ability of 

fish to learn from exposure to alarm cues (Magurran 1989; Chivers & Smith 1994a; 

Brown 2003).  

 The ability to learn to associate novel predator odors with predation risk allows fish 

to recognize potential predators through chemical stimuli without the need for the alarm 
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cue to be present. While it may not be advantageous to flee an area or otherwise employ 

extreme antipredator behavior, in response to learned predator odors alone, fish may 

increase awareness and increase visual scans after smelling a learned predator, which 

would decrease the fish’s reaction time if other senses confirm the presence of a strong 

immediate threat.  
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FIGURE 1. Illustration of the behavioral sequence initiated by the release of alarm cues 

during a predation event. A) A predation even occurs, skin cells are broken, and alarm 

cue is released into the water. B) Alarm cue and predator odor reach the olfactory organs 

of conspecifics of the prey in the area. C) Anti-predator behaviors are initiated.  
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 TABLE 1. Species shown to respond to damage-released alarm signals. Species are 
arranged alphabetically under Phylum and Class 
Taxa Reference 
Phylum cnidaria  

Anthopleura elegantissima Howe & Sheikh 1975, Howe (1976) 
Phylum mollusca  
Class Gastropoda  

Australorbis glabrutus Kempendorff 1942 
Littorina sitkana Yamada et al 1998 
Nassarius obsoletus, N. vibex, N. 
trivittatus 

Atema & Burd 1975; Atema and Stenzler 
(1977); Stenzler & Atema (1977) 

Physella virgata Crowl & Covich (1990) 
Pomacea paludosa, P. doliodes Snyder & Snyder (1971) 
Thais lamellosa Appleton& Palmer (1988) 

Phylum arthropoda  
Class Insecta  

Culex pipiens Sih (1986) 
Damselfly larvae: Enalagma spp. Chivers et al. (1996b); Wisenden et al. 

(1997) 
Mayfly larvae: Ephemerella aurivilli Scrimgeour et al. (1994) 
Baetis tricausatus Scrimgeour et al. (1944) 

Class Crustacea  
Calcinus laevimanus Hazlett (1990) 
Clibanarius vittatus Rittschof et al. (1992) 
Gammarus lacustris Wudkevich et al. 1997 
Gammarus pseudolimnaeus Williams & Moore (1985) 
Orconectes virilis Hazlett (1994) 
Pagurus longicarpus Rittschof et al. (1992) 
Pagurus pollicaris Rittschof et al. (1992) 
Phyilyra laevis Mckillup & McKillup (1992) 

Phylum echinodermata  
Diadema antillarium Snyder and Snyder (1970) 
Pycnopodia helianthoides Lawrence (1991) 
Strongylocentrotus droebachiensis Mann et al. (1984) 

Phylum Chordata  
Class Osteichthyes  

Abramites microcephalus Pfieffer (1977) 
Acanthopththalmus kuhlii Pfieffer (1977) 
Alburnoides bipunctatus Pfieffer (1977) 
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Alburnus alburnus Pfieffer (1977) 
Alestes nurse Pfieffer (1977) 
Anostomus anostomus Pfieffer (1977) 
Anostomus trimaculatus Pfieffer (1977) 
Aphyocharaz rubropinnis Pfieffer (1977) 
Asterropterys semipunctatus Smith (1989) 
Astyanaz bimaculatus Pfieffer (1977) 
Atherinops affinis Pfieffer (1977) 
Brachydanio rerio Pfieffer (1977); Jakobsen and Johnsen 

(1989) 
Brachygobius sabanus Smith et al. (1991); Smith and Lawrence 

(1992) 
Brycon sp. Pfieffer (1977) 
Carassius auratus Zhao et al. (2006) 
Carassius carassius Pfieffer (1977) 
Carnegialla vesca Pfieffer (1977) 
Carnegiella marthae Pfieffer (1977) 
Carnegiella strigata Pfieffer (1977) 
Catostomus catostomus Pfieffer (1977) 
Catostomus macrocheilus Pfieffer (1977) 
Cheirodon axelrodi Pfieffer (1977) 
Chicholsoma nigrofasciatum Wisenden and Sargent (1997) 
Chondrostoma nasus Pfieffer (1977) 
Chrosomus erythrogaster Pfieffer (1977) 
Clarias sp. Pfieffer (1977) 
Clinostomus funduloides Pfieffer (1977) 
Copeina arnoldi Pfieffer (1977) 
Copeina guttata Pfieffer (1977) 
Corydoras palaeatus Pfieffer (1977) 
Corynopoma riisei Pfieffer (1977) 
Couesius plumbeus Pfieffer (1977) 
Culaea inconstans Mathis & Smith (1993); Chivers & Smith 

(1994b); Chivers et al. (1995a) 
Cyprinus carpio Pfieffer (1977) 
Danio malabaricus Pfieffer (1977) 
Ephippicharax orbicularis Pfieffer (1977) 
Esomus lineatus Pfieffer (1977) 
Etheostoma (ammocrypta) beani Smith (1982) 
Etheostoma exile Smith (1979) 
Etheostoma nigrum Smith (1979) 
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Etheostoma swani Smith (1982) 
Fundulus olivaceus Pfieffer (1977); Reed (1969) 
Gambusia affinis Pfieffer (1977); Reed (1969); Garcia et al. 

(1992) 
Gasteropelecus laevis Pfieffer (1977) 
Gastrosteus aculeatus Brown and Godin (1997) 
Gnathopogon elongates Pfieffer (1977) 
Gnatholepis anjerensis Smith (1989) 
Gobio gobio Pfieffer (1977) 
Gryinocheilus aumonieri Pfieffer (1977) 
Gymnocorymbus ternetzi Pfieffer (1977) 
Hemigrammus armstrongi Pfieffer (1977) 
Hemigrammus caudovittatus Pfieffer (1977) 
Hemigrammus erythrozonus Pfieffer (1977); Wisenden et al. (2008); 

Brown et al. (1999); Brown and Godin 
(1999b); Darwish et al. (2005) 

Hemigrammus ocellifer Pfieffer (1977) 
Hemmigrammus rhodostomus Pfieffer (1977) 
Heterandria formosa Pfieffer (1977) 
Homalopterus sp. Pfieffer (1977) 
Hybognathus hankinsoni Pfieffer (1977) 
Hybopsis aestivalis Pfieffer (1977) 
Hybopsis biguttata Pfieffer (1977) 
Hyphessobrycon hertaxelrodi Pfieffer (1977) 
Hyphessobrycon innesi Pfieffer (1977) 
Hyphessobrycon pulchipinnis Pfieffer (1977) 
Hyphessobrycon scholzei Pfieffer (1977) 
Hyphessobrycon serape Pfieffer (1977) 
Ictalurus nebulosus Pfieffer (1977) 
Kneria maydelli Pfieffer (1977) 
Kryptopterus bicirrhis Pfieffer (1977) 
Labeo bicolor Pfieffer (1977) 
Lepomis cyanellus Brown & Brennan (2000) 
Lepomis gibbosus Golub et al. (2005) 
Leporinus affinis Pfieffer (1977) 
Leucaspius delineates Pfieffer (1977) 
Leuciscus cephalus Pfieffer (1977) 
Leuciscus idus Pfieffer (1977) 
Leuciscus leuciscus Pfieffer (1977) 
Leuciscus souffia Pfieffer (1977) 



13 
 

Megalamphodus megalopterus Pfieffer (1977) 
Microglanis parahybae Pfieffer (1977) 
Mimagoniates microlepis Pfieffer (1977) 
Moenkhausia oligolepis Pfieffer (1977) 
Mylocheilus caurinus Pfieffer (1977) 
Nannaethiops unitaeniatus Pfieffer (1977) 
Noemacheilus barbatulus Pfieffer (1977) 
Notropis atherinoides Pfieffer (1977) 
Notropis cornutus Pfieffer (1977) 
Notropis rubellus Pfieffer (1977) 
Notropis spilopterus Pfieffer (1977) 
Notropis texanus Pfieffer (1977) 
Notropis venustus Pfieffer (1977) 
Oligocottus maculosa Hugie et al. (1991); Houtman and Dill 

(1994) 
Onchorhynchus mykiss Brown and Smith (1998) 
Oreochromis mossambicus Jaiswal and Waghray (1990) 
Percina nigrofasciata Smith (1982) 
Phoxinus phoxinus Pfieffer (1977) 
Phractolaemus ansorgei Pfieffer (1977) 
Pimelodella gracilis Pfieffer (1977) 
Pimephales promelas Pfieffer (1977); Lawrence and Smith 

(1989); Chivers and Smith (1993) 
Poecilia reticulata Pfieffer (1977); Brown and Godin (1999a) 
Pristella riddlei Pfieffer (1977) 
Ptychocheilus oregonensis Pfieffer (1977) 
Puntius holotaenia Pfieffer (1977) 
Puntius tetrazona Pfieffer (1977) 
Rasbora heteromorpha Pfieffer (1977) 
Rhinichthys atratulus Pfieffer (1977) 
Rhinichthys cataractae Pfieffer (1977) 
Rhodeus ocellatus Pfieffer (1977) 
Rhodeus sericeus Pfieffer (1977) 
Richardsonius balteatus Pfieffer (1977) 
Roeboides microlepis Pfieffer (1977) 
Rutilus rutilus Pfieffer (1977) 
Scardinius erythrophthalmus Pfieffer (1977) 
Semotilus atromaculatus Pfieffer (1977) 
Synodontis nigriventris Pfieffer (1977) 
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Thanichthys albonubes Pfieffer (1977) 
Thayeria obliquus Pfieffer (1977) 
Thayeria sanctaemariae Pfieffer (1977) 
Tinca tinca Pfieffer (1977) 
Tribolodon hakonensis hakonensis Pfieffer (1977) 
Tribolodon hakonensis tazanowskii Pfieffer (1977) 

Class Amphibia  
Bufo americanus Petranka (1989) 
Bufo boreas Hews and Blaustein (1985); Hews (1988)) 
Bufo bufo Eibl-Eibesfeldt (1949); Hrbacek (1950); 

Kulzer (1954); Pfeiffer (1960) 
Bufo calamita Pfieffer (1966) 
Cynops pyrrhogaster Marvin and Hutchison (1995) 
Notophthalmus viridescens Marvin and Hutchison (1995); Woody and 

Mathis (1997) 
Rana aurora Wilson and Lefcort (1993) 
Rana cascadae Hews and Blaustein (1985) 
Rana perezi Gonzalo et al.(2007) 
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STUDY ORGANISM 

 Suckers in the family Catostomidae are primarily endemic to North America 

(Helfman et al. 1997). More than half of the approximately 70 described species can be 

found on either the Canadian, U.S., or Mexican endangered species lists (Helfman 2007). 

Lake Suckers (genus Chasmistes) are particularly threatened. There are four described 

species of Chasmistes: cui-ui (Chasmistes cujus), shortnose sucker (C. brevirostris), June 

sucker (C. liorus), and the Snake River sucker (C. muriei). Each lake sucker is endemic 

to one of four hydrologic basins in the Western United States. The snake river sucker is 

thought to be extinct, and the three extant species are on the U.S. endangered species list 

(Scoppettone & Vinyard 1991; U.S. Fish and Wildlife Service 1999; Helfman 2007).  

 The June sucker is endemic to Utah Lake, Utah (Whitney & Belk 2000). Utah Lake 

is thought to once have been a clear, macrophyte-dominated, shallow lake that supported 

a community of 13 native fish (Table 2). Today the lake is eutrophic, with macrophytes 

(mostly nonnative) relegated to the near shore, and all but two native fish have been 

extirpated from the lake. The native species have been replaced with 16 nonnative fish, 

including the top-level predators walleye (Sander vitreum), white bass (Morone 

chrysops), and largemouth bass (Micropterus salmoides) (Whitney & Belk 2000; Belk et 

al. 2001; Billman & Crowl 2007, Table 3). On April 30, 1986, the June sucker was listed 

as endangered with critical habitat (U.S. Fish and Wildlife Service 1986). A restocking 

program began in 1994 and to date has stocked over 100,000 June sucker into Utah Lake 

(Utah Department Wildlife Resources 2008). Very few of the stocked fish have appeared 

in the spawning population (Rasmussen, personal communication).  
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 In this study, I investigated the possibility of using learned recognition of novel 

predator odors to increase survival of hatchery-reared fish. I tested five specific 

hypotheses. 1) Hatchery-raised sucker do not have an innate recognition of bass odor. If 

hypothesis one is true, I would not expect to see a measurable fright reaction in response 

to exposure to bass odor alone. 2) Sucker do produce and react to a conspecific chemical 

alarm cue. If hypothesis two is true, I would expect to see an intense fright reaction when 

fish are exposed to homogenized sucker skin cells. 3) Sucker can recognize conspecific 

alarm cue in the odor of a bass that has eaten sucker. If hypothesis three is true, I would 

expect to see a fright response when fish are exposed to the odor of bass that have 

consumed sucker. 4) Sucker can learn to associate bass odor with the threat of predation. 

If hypothesis four is true, I could expect fish that have previously smelled the odor of a 

bass that had eaten sucker to show a fright response when they are later exposed to bass 

odor alone. 5) Training sucker to recognize bass odor will increase survival in a later 

encounter with a bass. If hypothesis five is true, I would expect trained sucker to have a 

higher survival rate than naïve sucker in short-term exposures to a bass. 
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TABLE 2. Native fish of Utah Lake, Utah 
Species Current Status in Utah 

Lake 
June Sucker, Chasmistes liorus Present 
Utah Sucker, Catostomus ardens Present 
Utah Lake Sculpin, Cottus echinatus Absent 
Bonneville Cutthroat Trout, 
Onchorhynchus clarkii utah 

Absent 

Least Chub, Iotichthys phlegethontis Absent 
Bonneville Redside Shiner, 
Richardsonius balteatus hydrophlox 

Absent 

Mottled Sculpin, Cottus bairdi Absent 
Leatherside Chub, Gila copei Absent 
Utah Chub, Gila atraria Absent 
Speckled Dace, Rhinichthys osculus Absent 
Longnose Dace, Rhinichthys cataractae Absent 
Mountain Whitefish, Prosopium 
williamsoni 

 Absent 

Mountain Sucker, Catostomus 
platyrhyncus 

Absent 
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TABLE 3. Nonnative fish established in Utah Lake, Utah 
Species Year Introduced 
Black Bullhead, Ameiurus melas 1871 
Common carp, Cyprinus carpio 1881 
Goldfish, Carassius auratus 1889 
Green Sunfish, Lepomis cynellus 1890 
Bluegill Sunfish, Lepomis machrochirus 1890 
Largemouth Bass, micropterus salmoides 1890 
Black Crappie, Pomoxis nigromaculatus 1890 
Yellow Perch, Perca flavescens 1890 
Channel Catfish, Ictalurus punctatus 1911 
Smallmouth Bass, Micropterus dolomieu 1912 
Red Shiner, Cypinella lutrensis 1920 
Western Mosquitofish, Gambusia affinis ~1930 
Walleye, Sander vitreum 1952 
White Bass, Morone chrysops 1956 
Fathead Minnow, Pimephales promelas 1968 
Grass Carp, Ctenopharyngodon idella ~1990 



19 
 

METHODS 

 All trials were conducted at the Utah State University Millville Aquatic Research 

Facility in Millville, Utah. Sucker were obtained from Utah Division of Wildlife’s 

Fisheries Experiment Station located in Logan, Utah. Largemouth bass were used as 

predators and were captured from Mantua Reservoir, Mantua, Utah. Swordtail 

(Xiphophorus helleri) were used to allow collection of predator odor alone and were 

purchased from commercial pet stores in Ogden, Utah.  

Preparation of Stimuli 

 All stimuli were prepared and administered in concentrations well above those 

thought to be necessary for detection (Brown et al. 2001; Døving et al. 2005). To collect 

water containing alarm cue without the presence of any predator odor (hereinafter alarm 

cue, Table 4), four sucker were euthanized via a blow to the head. The sucker were then 

filleted and the skin area measured. The fillets were immediately homogenized with 

chilled distilled water at a concentration of 0.1 cm2/1 ml H2O. The homogenized mixture 

was then filtered through glass wool, divided into 60 ml aliquots and frozen for future 

use.  

 Predator odor alone and predator odor with alarm cue present were prepared 

similarly. Two groups of four bass were fed either swordtail (hereinafter predator odor, 

Table 4) or sucker (hereinafter predator odor plus alarm cue, Table 4) ad libitum for ten 

days. Swordtail do not produce an alarm cue recognizable by most fish (Golub & Brown 

2003). On the tenth day, one hour after feeding, the bass were removed from their 
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holding tank, rinsed with distilled water, and placed into 150 L tanks by feeding history. 

The tanks were aerated but not filtered. After 24 hours the bass were removed. The 

remaining water was divided into 60 ml aliquots and frozen for future use. 

Initial trials 

 This experiment was designed to test hypotheses one through three via a 2 x 2 

factorial design with predator odor and June sucker alarm cue as the main factors. 

Eighteen 190 L experimental tanks were encircled with a curtain to remove any visual 

stimuli. Experimental tanks were fiberglass on three sides with a class front with a gravel 

bottom and one plastic aquarium plant. Tanks were aerated but not filtered. Water was 

kept between 18 and 21°C. One meter of 0.25 centimeter inside-diameter plastic tubing 

was secured to the airstone tubing and extended through the curtain. This tube was used 

to inject stimulus during the trial. Five one-year-old, naïve sucker were placed into each 

tank. The sucker placed into the fiberglass experimental tanks did not return to normal 

swimming behavior within 96 hours. Because the sucker never acclimated to the 

experimental tanks, the fiberglass tanks were abandoned and new glass tanks were 

purchased.   

Alarm cue recognition experiment 

 This experiment was designed to test hypotheses one through three via a 2 x 2 

factorial design with predator odor and June sucker alarm cue as the main factors (Table 

4). Treatments were randomized among tanks. Twelve replicates were conducted for each 
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of the four treatment combinations. Trials were conducted between 10-17 November 

2007 and 14-16 March 2008.  

 Four 150 L experimental tanks were encircled with a curtain to remove any visual 

stimuli. An opaque barrier was placed in between the tanks to visually separate the tanks. 

Tanks were aerated but not filtered. Water was kept between 18 and 21°C. One meter of 

0.25 centimeter inside-diameter plastic tubing was secured to the airstone tubing and 

extended through the curtain. This tube was used to inject stimulus during the trial. Tanks 

were drained, rinsed, dried, and refilled between each trial. 

 Five one-year-old, naïve sucker were placed into each tank and allowed to 

acclimate for 24 hours. Acclimation was defined as a return to normal swimming 

behavior. A total of 240 sucker were used (mean = 177.34, SD = 25.99). Each fish was 

used only once to avoid any learning bias. Prior to the start of each trial, 60 ml of water 

was drawn out of the tank with a syringe through the injection hose and discarded to 

remove any water in the hose. Another 60 ml of water was then drawn out and was used 

to flush the stimulus completely through the tube. Trials were 10 minutes in duration. 

Sixty milliliters of stimulus was injected 5 minutes into the trial creating a concentration 

of 4 x 10-4 ml of stimulus per ml of tank water. Data were collected during the 5-minute 

pre-exposure and 5-minute post-exposure periods.  

Behavioral measurements 
 
 Sucker were observed prior to the beginning of experiments to identify typical 

fright reaction behavior. Two fright reactions, dashing and freezing, were recorded in 

both alarm cue recognition and learning experiments. Dashing was defined as rapid, 
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undirected swimming. Dashing was considered the most extreme response, and I 

expected to see this only when an immediate threat was perceived. Freezing was defined 

as cessation of any movement for at least 15 seconds. Freezing was considered a less 

extreme response; therefore I expected to see freezing when a lesser threat was perceived 

and after an initial fright response involving dashing. The variable recorded for each 

behavior was the amount of time, in seconds, when any fish in the tank was exhibiting the 

behavior. To avoid overlap in variable measurement if fish in the tank were exhibiting 

both dashing and freezing behavior, the time was assigned to dashing. I performed 

behavioral analysis from video using Observer XT® software. I calculated the amount of 

time used in statistical analysis by subtracting pre-exposure values from post-exposure 

values. Subtracting pre-exposure values from post-injection values allowed me to control 

for differences in fish behavior by trial. 

Statistical analysis 
 
 Time spent dashing was log transformed to meet the assumption of normality of 

residuals. I compared treatments using analysis of variance (ANOVA). Post hoc mean 

comparisons were done using the Ryan-Einot-Gabriel-Welsch (REGWQ) method. Sucker 

exposed to stimulus two did not spend a significantly longer time dashing than the 

control. Therefore, I compared time spent freezing between stimulus 2 and the control in 

a paired t-test. All analyses were performed with SAS version 9.1.3 for personal 

computers (SAS Institute 2004).  
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Learning experiment 

 This experiment was designed to test whether sucker learned to associate bass 

odor with predation risk after one exposure to bass odor in conjunction with conspecific 

alarm cue (hypothesis four). I exposed two groups of 80 one-year-old sucker to either 

bass odor alone (hereafter referred to as naïve) or odor of bass fed sucker (hereafter 

referred to as trained). Sucker were initially exposed in 230 L aerated flow through tanks. 

Flow was temporarily stopped and 240 ml of the appropriate stimulus was added to the 

tank creating a concentration of .001 ml of stimulus per ml of tank water. The 

concentration of stimulus was higher than that used in the first trial to ensure detection by 

all fish. After 30 minutes flow was resumed.  

 Two days after initial exposure, 40 fish from each exposure history were placed 

into experimental tanks in groups of five. Experimental tanks were set up identically to 

experiment one. The order of testing was randomized. Fish were allowed to acclimate 

before trials. I followed the same procedure with the remaining fish ten days after initial 

exposure (Fig. 2). Trials were conducted as described in the alarm cue recognition 

experiment, except all fish were exposed to bass odor alone. Sucker were initially 

exposed on 14 July 2008 and trials were conducted on 16 and 24 July 2008. A total of 

160 sucker were used (mean = 198.29, SD = 25.28). Each fish was only used once.  

 Behavioral variables were recorded following the same methods as experiment 

one. There was no significant dashing behavior observed. Therefore, time spent freezing 

was compared between exposure history and days since exposure using ANOVA. 

Because the interaction term was significant, a Tukey adjustment for multiple 
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comparisons was used to determine which treatment combinations were significantly 

different.  

Survivorship experiment 

  Two 1500 L experimental tanks were aerated but not filtered and the water was 

kept between 18 and 21°C. Gravel was placed on the bottom of the tanks. One group of 

five plastic aquarium plants was positioned in the tank to provide shelter. Five one-year-

old sucker were placed into a 150 L aerated flow-through tank. Flow was temporarily 

stopped and 60 ml of either bass odor alone (hereafter referred to as naïve) or bass odor 

plus alarm cue (hereafter referred to as trained) was added to the tank. After 30 minutes 

flow was resumed. A total of 80 sucker were used (mean = 92.58, SD = 17.73). Each fish 

was only used once. Sucker used in this experiment were raised from the larval stage at 

Millville Aquatic Research Facility. 

 One hour after exposure, sucker were placed into the experimental tank and 

allowed to acclimate for several hours. Three bass were used (287, 300, and 298 mm SL). 

Each bass was kept in an individual holding tank and starved for 24 hours prior to use. 

This time period should be sufficient for full gastric evacuation, therefore alarm cue 

should not be detectable from previously eaten sucker (Hayward & Bushmann 1994). 

One bass was then removed from the holding tank, rinsed, and added to the experimental 

tank. After 90 minutes the bass was removed and the surviving sucker were counted. I 

chose Ninety minutes to minimize the possibility of in-tank learning. Between trials, the 

tanks were drained, rinsed for 20 minutes, and refilled. Eight trials of each exposure 
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history were conducted from 7-17 October 2008. Trials were randomized with respect to 

exposure history, experimental tank, and bass used.  

 The number of sucker that survived was the response measured. All trained 

sucker survived, which allowed me to treat the mean survival of trained sucker as a 

constant. The mean survival of naïve sucker was compared to this constant in a one tailed 

t-test.  
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TABLE 4. Experimental treatments for experiment one 

 Alarm cue absent Alarm cue present 

Predator odor 
absent 

Distilled water  
(control) 

Crushed sucker skin cells  
(alarm cue)  

Predator odor 
present 

Bass fed swordtail 
(bass odor) 

Bass fed sucker 
(bass odor plus alarm cue) 
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FIGURE 2. Experimental design for experiment two.  
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RESULTS 

Alarm cue recognition experiment 

 There was no evidence that predator-naïve sucker have an innate recognition of 

bass odor. Exposure to bass odor alone did not result in higher levels of time spent 

dashing than the control (adjusted p > 0.05, Fig. 3). The absence of dashing behavior 

indicates that a strong immediate threat was not conveyed through bass odor alone. Time 

spent freezing, which should increase if a lesser threat was perceived, was also similar 

between sucker exposed to bass odor alone and the control (t22=0.73, p=0.4713, Fig. 4).  

 Although sucker did not show an innate recognition of bass odor alone, they were 

able to detect alarm cues in the odor of bass which had eaten conspecifics (F3,44=15.52, 

p<0.0001, REGWQ α=0.05, Fig. 3). Application of both stimuli where alarm cues were 

present resulted in higher levels of time spent dashing than the control (p<0.05, Fig. 3). 

While conspecific alarm cues alone elicited the highest levels of dashing behavior, sucker 

exposed to bass plus alarm cue exhibited dashing behavior 15 times higher than those 

exposed to bass odor alone. The raw data collected can be found in Table A.1. 

Learning experiment 

 There was evidence that sucker form short-term associations between odors. Two 

days after exposure, trained sucker showed recognition of bass odor as a threat (time 

spent freezing, F3,28 = 6.31, p=0.0021, Fig. 5). By day 10, trained sucker no longer 

showed any recognition of bass odor (trained vs naïve at 10 days, p = 1.0000). Freezing 

behavior of naïve sucker was similar between days two and 10 (p=0.7600). There was no 
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evidence that sucker in any treatment combination recognized the bass odor alone as a 

strong immediate threat (time spent dashing, F3,28=0.42, p=0.7434). The raw data 

collected can be found in Table B.1. 

Survivorship experiment 

 Previously exposing June sucker to the odor of bass fed June sucker (hereafter 

referred to as training) resulted in increased survival of sucker when exposed to a bass for 

90 minutes. One hundred percent of trained sucker survived the encounter with a bass, 

while 82.5 % of naïve sucker survived and a predation event occurred in 50% of trials 

with naïve sucker (Fig. 6). In three of four trials where predation occurred one sucker was 

consumed, two sucker were consumed in the fourth trial (Fig. 7). Mean survival of naïve 

sucker was significantly less than trained sucker (t7=-2.497, p=0.0206). The raw data 

collected can be found in Table C.1. 
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FIGURE 3. Time spent dashing (mean + SE) by treatment in experiment one. Time spent 

dashing was calculated by subtracting pre-exposure from post-exposure values for each 

trial. Significance was determined using ANOVA (F3,44 = 15.52, p < 0.0001). Letters 

above bars indicate significant differences among treatments identified by REGWQ post 

hoc mean comparison (p < 0.05).   
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FIGURE 4. Time spent freezing (mean + SE) for control and bass treatments in experiment 

one. Time spent freezing was calculated by subtracting pre-exposure from post-exposure 

values for each trial. Means were compared using a paired t-test (t22 = 0.73, p = 0.4713).  

   



32 
 

 

 

 

FIGURE 5. Time spent freezing (mean + SE) by exposure history after two and ten days in 

experiment two. Time spent freezing was calculated by subtracting pre-exposure from 

post-exposure values for each trial. Significance was determined using ANOVA (F3,28 = 

6.31, p < 0.0021). Letters above bars indicate significant differences among treatments 

identified by Tukey post hoc test (p < 0.03). 
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 FIGURE 6. The number of trials with and without predation for both trained and naïve 
fish . 
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FIGURE 7. Distribution of sucker consumed in survivorship experiment experiment trials.  
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DISCUSSION 

 Incorporating behavior into the study of conservation biology has been a topic of 

interest for some time (see Behavioural ecology as a tool in conservation biology, Oikos 

77:2). Antipredator behavior, specifically ways to combat native prey naïveté, is an area 

that is potentially useful for managers (Shumway 1999; Caro 2007). As captive 

propagation programs increase in fisheries management, interest in training hatchery-

raised fish in everything from natural feeding to antipredator behavior has also increased 

(Suboski & Templeton 1989; Brown & Laland 2001; Wisenden et al. 2004). 

 In my experiments I found evidence to support my first hypothesis that June sucker 

do not have an innate recognition of bass odor. I saw no difference in the behavior of 

sucker exposed to predator odor alone and the control. Naïveté towards a novel predator’s 

odor is consistent with other studies (Brown 2003). Hatchery-raised rainbow trout 

(Oncorhynchus mykiss) have been shown to be naïve to the odor of both cutthroat trout 

(Oncorhynchus clarkii) and northern pike (Esox lucius) (Brown & Smith 1998; Mirza & 

Chivers 2003). Yet some hatchery raised fish do appear to retain an innate recognition of 

a predator’s odor with whom they share a co-evolutionary history. Atlantic salmon 

(Salmo salar) have been shown to possess an innate recognition of the danger posed by 

northern pike (Hawkins et al. 2007b). Chinook salmon (Oncorhynchus tshawytscha) have 

also been shown to possess an innate recognition of northern pikeminnow (Ptychocheilis 

oregonensis). Similarly, arctic charr (Salvelinus alpines) were shown to respond innately 

to the odor of brown trout (Salmo trutta) (Vilhunen & Hirvonen 2003).  
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 My second hypothesis, that June sucker produce and react to a conspecific alarm 

cue, was also supported by my data. Sucker exposed to June sucker alarm cue alone 

exhibited the highest levels of dashing behavior. Production of conspecific alarm cue is 

one of the characteristics of the super-order Ostariophysi (Helfman et al. 1997). Suckers 

are a member of the ostariophysan super-order; thus my results were expected.  

 I also found support for the hypothesis that June sucker can recognize conspecific 

alarm cue in the odor of a largemouth bass which has eaten June sucker. I saw 

significantly higher levels of dashing in fish exposed to the odor of largemouth bass 

which had eaten June sucker than in those exposed to distilled water. The amount of time 

spent dashing was significantly higher in those sucker exposed only to alarm cue 

compared to those exposed to bass odor plus alarm cue. One possible explanation for this 

is that the concentration of alarm cue would be much higher in the alarm cue only 

stimulus simply because the bass plus alarm cue treatment contains both predator odor 

and alarm cue. Concentration of alarm cue may serve as an indicator of the proximity of 

the predation event or the threat posed by the approaching predator (Mirza & Chivers 

2003; Zhao et al. 2006). If concentration does convey information about proximity or 

threat level a stimulus which contains a higher concentration of the alarm cue would be 

expected to elicit higher levels of fright response. Hawkins et al. (2007b) found that the 

fright response of Atlantic salmon to pike increased as concentration increased. Similarly, 

Zhao et al. (2006) found that the fright response of goldfish (Carassius auratus) to pike 

odor and goldfish alarm cue increased as the concentration of the stimulus was increased.  

 My fourth hypothesis, that sucker can learn to associate bass odor with the threat of 

predation was also supported by my data. Although my results showed June sucker can 
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learn to associate largemouth bass odor with the threat of predation, this association 

disappeared by 10 days after exposure. The short length of time that June sucker retain a 

fright response to predator odor may be due to a lack of reinforcement of the association. 

More research is needed to investigate the effectiveness of coupling chemical cue training 

with visual reinforcement of a predation event in increasing the length of retention. The 

short retention length makes sense considering the “odor cocktail” in which fish live in 

the natural environment. There are a wide variety of odors which would be present at any 

given time in addition to the predator odor and alarm cue. It would be not be to the fish’s 

advantage to form a permanent association between every odor present and danger after a 

single exposure to conspecific alarm cue. Therefore, fish may retain a short association, 

and in the absence of reinforcement, the association may disappear.  

 Examples of learned recognition of a novel predator odor are abundant in the 

literature. The length of retention of the learned recognition appears to vary significantly 

between species. Rainbow trout have been shown to retain a fright response to a learned 

predator odor for 21 days, brook trout (Salvelinus fontinalis) have only been found to 

retain an association for 10 days (Brown & Smith 1998; Mirza & Chivers 2000). In many 

species that have been shown to learn from alarm cues (ex. Chinook salmon, walleye, 

glowlight tetras, goldfish, Atlantic salmon) the duration of association has not been tested 

(Berejikian et al. 1999; Darwish et al. 2005; Zhao et al. 2006; Leduc et al. 2007).  

 Despite the short duration of the association, training June sucker to recognize 

largemouth bass odor did increase survival in a later encounter with a bass. The increase 

in survival supports my fifth hypothesis: Training sucker to recognize bass odor will 

increase survival in a later encounter with a bass. Although statistically significant the 



38 
 
difference in survival between trained and naïve fish may not appear staggering. The 

small difference may be explained by the nature of the trials. In a tank with no filtration, 

once a predation event occurs it is reasonable to assume alarm cue would be released into 

the water. From the results of the alarm cue recognition experiment, it is reasonable to 

conclude that release of alarm cue would elicit a strong fright response in the sucker 

remaining in the tank. If the anti-predator behavior of the sucker is effective against the 

predation strategy employed by largemouth bass, no further predation would be expected.  

 My study is not the first to show an increase in survival after predator odor training 

of hatchery-raised fish. Mirza and Chivers (2000) found that brook trout trained to 

recognize chain pickerel (Esox niger) odor had higher survival in subsequent encounters 

with chain pickerel in both laboratory and field experiments. Fathead minnows trained to 

recognize a heterospecific’s alarm cue were less likely to be attacked when exposed to a 

novel predator which had consumed the heterospecific species they were trained to 

recognize than those with no training (Chivers et al. 2002). Berejikian et al. (1999) 

compared the survival of juvenile Chinook trained to recognize the odor of cutthroat 

trout. The Chinook were raised in both traditional and complex hatchery environments. 

The results of their study were mixed, although there was evidence that recognition of 

cutthroat trout odor increased survival when the juveniles were placed in a natural stream. 

Not all studies investigating possible survival benefits of training hatchery raised fish to 

recognize predator odors have found positive results. Hawkins et al. (2007a) found no 

difference between the survival of naïve juvenile hatchery raised Atlantic salmon and 

those trained to recognize pike odor. Studies of survival benefit are complex and it is 
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difficult to control for all sources of mortality in field studies, which may account for 

some of the variability in results.  

 The production of an alarm cue is essential for this type of predator-recognition 

training to be applicable in management situations. Ostariophysan fish make up 

approximately 64% of all freshwater fish species worldwide, and research has shown that 

the production of alarm cue is not limited to the Ostariophysan order (Mathis & Smith 

1993; Chivers & Smith 1998). The wide spread nature of alarm cues suggests that 

training captively propagated fish may be applicable to a wide variety of native, 

threatened fish.  

 Prior to implementation of a training program for hatchery-raised fish, several other 

questions need to be addressed. Many studies have found that chemical pollution and an 

altered pH can negatively impact the ability of fish to detect chemical cues (McPherson et 

al. 2004; Olivier et al. 2006; Mandrillon & Saglio 2007). For fish that are being 

reintroduced to chemically impacted water bodies trials should be conducted in water 

collected from the body of water where the reintroduction is intended. Also, many 

systems where nonnatives are a significant threat to the continued existence of native fish 

have more than one nonnative predator. To my knowledge, only one study has been 

conducted testing the ability of fish to learn the odors of several predators at once 

(Darwish et al. 2005). Darwish et al. found that glowlight tetras (Carassius auratus) were 

able to learn to recognize several novel predator odors from a single exposure to a 

stimulus containing the odor of 3 predators and the glowlight tetra alarm cue. The ability 

to learn from exposure to novel odors in conjunction with conspecific alarm cue varies 
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greatly across species. Therefore species-specific studies should be conducted before 

implication of a training program.  

 To reestablish or recover native fish, removal of nonnative predators is often the 

most desirable goal, but is likely not achievable. My research shows that it may be 

possible to train naive, hatchery-raised fish to recognize predators prior to stocking and 

decrease losses due to predation. Training native fish combined with control of nonnative 

predator may reduce predation losses enough to allow stocked fish to contribute to the 

spawning population, which is the goal of most captive propagation programs.  

  Just as understanding the ecology and genetics of the species of concern is 

essential to designing an effective management strategy, understanding an organism’s 

behavior can often give insights into how to make conservation efforts more effective and 

efficient. Some conservation efforts have faltered due to a lack of incorporating the 

known behavior of the organism into the conservation efforts. For example, efforts to 

establish a migrating population of the endangered whooping crane (Grus Americana) 

were hampered by an oversight in accounting for the early-life sexual imprinting 

behavior of the whooping crane. During the reintroduction project, whooping cranes 

hatched in captivity were raised by sandhill cranes (Grus Canadensis), with the idea that 

the migratory sandhill cranes would teach their migration behavior and route to the young 

whooping cranes, eventually establishing a self-sustaining breeding population of 

whooping cranes. This strategy would have worked if whooping cranes did not learn to 

mate with sandhill cranes by visually imprinting on them. This behavior resulted in a 

cohort of whooping cranes that would not display to conspecifics, which led to failure of 

the reintroduction (U.S. Fish and Wildlife Service 1997). This example highlights the 
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importance of taking the behavior of the organism into account when designing 

management strategies.  

 My work is one example of combining behavioral knowledge with management 

and conservation goals to increase the effectiveness of programs that are already in place. 

Predation by nonnatives has long been recognized as an obstacle to effective 

reintroduction and stocking efforts for native fish (Marsh & Brooks 1989). Unfortunately, 

nonnatives are notoriously difficult to remove once they are established, either due to 

logistical constraints or public opinion. My results suggest that training may decrease 

predation on newly stocked hatchery-raised June sucker. 
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Appendix A. Data from alarm cue experiment



 
 
Table A.1. Data from alarm cue experiment. Stimulus indicates the stimulus 
injected during the trial (dh20=control, js=alarm cue, bass= bass odor alone, bjs= 
bass odor plus alarm cue). Dashingpre indicates the amount of time where 
dashing behavior was observed during the pre-exposure period. Dashingpost 
indicates the amount of time where dashing behavior was observed during the 
post-exposure period. Dashingdiff is the difference between dashingpost and 
dashingpre. Freezepre indicates the amount of time where freezing behavior was 
observed during the pre-exposure period. Freezepost indicates the amount of time 
where freezing behavior was observed during the post-exposure period. 
Freezediff is the difference between freezepost and freezepre.  

tank date stimulus 
dashing 
pre 

dashing 
post 

dashing 
diff 

freeze 
pre 

freeze 
post 

freeze 
diff 

1 11/11/2007 bjs 0.00 0.00 0.00 0.00 105.81 105.81 
2 11/11/2007 js 0.00 22.49 22.49 0.00 166.76 166.76 
3 11/11/2007 dh20 0.00 0.00 0.00 130.58 288.16 157.58 
4 11/11/2007 bass 0.00 5.78 5.78 22.93 141.24 118.31 
1 11/12/2007 js 0.00 43.72 43.72 67.43 117.69 50.26 
2 11/12/2007 dh20 0.00 5.62 5.62 71.72 167.73 96.01 
3 11/12/2007 bass 29.68 31.59 1.91 191.72 115.85 -75.87 
4 11/12/2007 bjs 0.00 21.50 21.50 0.00 144.58 144.58 
1 11/14/2007 bass 14.41 15.17 0.76 12.18 200.31 188.13 
2 11/14/2007 bjs 0.00 62.38 62.38 0.00 136.76 136.76 
3 11/14/2007 js 0.00 81.37 81.37 0.00 123.73 123.73 
4 11/14/2007 dh20 0.00 0.00 0.00 20.55 66.72 46.17 
1 11/15/2007 bjs 0.00 9.69 9.69 142.77 175.00 32.23 
2 11/15/2007 js 0.00 43.02 43.02 139.98 160.18 20.20 
3 11/15/2007 dh20 0.00 0.00 0.00 234.06 279.37 45.31 
4 11/15/2007 bass 0.00 0.00 0.00 0.00 168.47 168.47 
1 11/17/2007 dh20 0.00 9.72 9.72 0.00 157.83 157.83 
2 11/17/2007 bass 0.00 0.00 0.00 0.00 200.40 200.40 
3 11/17/2007 bjs 0.00 0.00 0.00 64.36 17.06 -47.30 
4 11/17/2007 js 0.00 38.85 38.85 0.00 167.93 167.93 
2 11/18/2007 bjs 0.00 50.60 50.60 11.97 226.75 214.78 
1 11/18/2007 bass 0.00 0.00 0.00 103.32 233.82 130.50 
3 11/18/2007 js 0.00 0.00 0.00 285.70 300.00 14.30 
4 11/18/2007 dh20 0.00 0.00 0.00 0.00 227.77 227.77 
1 2/5/2008 bass 0.00 2.06 2.06 0.00 275.65 275.65 
2 2/5/2008 bjs 0.00 0.00 0.00 5.00 5.00 0.00 
3 2/5/2008 js 0.00 5.62 5.62 15.19 144.94 129.75 
4 2/5/2008 dh20 4.31 0.00 -4.31 48.55 154.96 106.41 
1 2/7/2008 js 0.00 73.03 73.03 35.69 195.70 160.01 
2 2/7/2008 dh20 0.00 0.00 0.00 36.00 137.60 101.60 
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Table A.1. continued 

tank date stimulus 
dashing 
pre 

dashing 
post 

dashing 
diff 

freeze 
pre 

freeze 
post 

freeze 
diff 

3 2/7/2008 bass 0.00 2.42 2.42 0.00 94.63 94.63 
4 2/7/2008 bjs 0.00 0.00 0.00 14.69 47.47 32.78 
1 2/10/2008 dh20 0.00 0.00 0.00 0.00 24.34 24.34 
2 2/10/2008 bass 0.00 0.00 0.00 120.61 187.77 67.16 
3 2/10/2008 bjs 0.00 0.00 0.00 127.72 168.15 40.43 
4 2/10/2008 js 0.00 47.65 47.65 0.00 20.28 20.28 
1 2/16/2008 bjs 0.00 0.00 0.00 2.94 45.89 42.95 
2 2/16/2008 js 0.00 43.10 43.10 5.50 55.64 50.14 
3 2/16/2008 dh20 0.00 0.00 0.00 100.25 177.10 76.85 
4 2/16/2008 bass 0.00 0.00 0.00 232.92 295.10 62.18 
1 3/14/2008 bjs 0.00 18.87 18.87 54.15 147.08 92.93 
2 3/14/2008 js 0.00 64.05 64.05 0.00 181.92 181.92 
3 3/14/2008 dh20 0.00 0.00 0.00 66.98 124.76 57.78 
4 3/14/2008 bass 0.00 0.00 0.00 0.00 92.55 92.55 
1 4/18/2008 js 2.34 33.57 31.23 78.81 222.07 143.26 
2 4/18/2008 dh20 0.00 0.00 0.00 30.88 140.03 109.15 
4 4/18/2008 bjs 0.00 37.52 37.52 39.49 181.49 142.00 
3 4/18/2008 bass 0.00 0.00 0.00 8.10 159.84 151.74 
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Table B.1. Data from learning experiment. Time indicates the group (1-4) in which the 
trial was run. Trials in group one were run first, group two second, etc. Treat indicates 
the number of days since exposure. Exp indicated the stimulus injected during the trial 
(bass= bass odor alone, bjs= bass odor plus alarm cue). Dash pre indicates the amount of 
time where dashing behavior was observed during the pre-exposure period. Dash post 
indicates the amount of time where dashing behavior was observed during the post-
exposure period. Dash diff is the difference between dash post and dash pre. Freeze pre 
indicates the amount of time where freezing behavior was observed during the pre-
exposure period. Freeze post indicates the amount of time where freezing behavior was 
observed during the post-exposure period. Freeze diff is the difference between freeze 
post and freeze pre.  

tank time date treat exp 
dash 
pre 

dash 
post 

dash 
diff 

freeze 
pre 

freeze 
post 

freeze 
diff 

1 1 7/16/2008 2 bass 0.00 0.00 0.00 23.97 23.79 -0.18 
2 1 7/16/2008 2 bass 1.85 0.00 -1.85 74.13 76.74 2.61 
2 2 7/16/2008 2 bass 0.00 0.00 0.00 0.00 9.91 9.91 
4 1 7/16/2008 2 bass 0.00 0.00 0.00 2.02 17.46 15.44 
3 2 7/16/2008 2 bass 0.00 33.07 33.07 178.90 200.46 21.56 
3 1 7/16/2008 2 bass 0.00 0.00 0.00 0.00 78.49 78.49 
1 3 7/16/2008 2 bass 0.00 0.00 0.00 79.05 248.84 169.79 
1 4 7/16/2008 2 bass 0.00 0.00 0.00 0.00 209.81 209.81 
3 3 7/16/2008 2 bjs 0.00 0.00 0.00 175.15 260.03 84.88 
4 2 7/16/2008 2 bjs 0.00 0.00 0.00 115.62 235.27 119.65 
4 4 7/16/2008 2 bjs 0.00 17.01 17.01 16.98 179.74 162.76 
3 4 7/16/2008 2 bjs 0.00 0.00 0.00 21.09 229.70 208.61 
4 3 7/16/2008 2 bjs 0.00 0.00 0.00 50.20 278.03 227.83 
1 2 7/16/2008 2 bjs 0.00 0.00 0.00 61.75 289.67 227.92 
2 3 7/16/2008 2 bjs 0.00 0.00 0.00 48.43 277.84 229.41 
2 4 7/16/2008 2 bjs 0.00 0.00 0.00 31.68 269.52 237.84 
1 3 7/24/2008 10 bass 0.00 0.00 0.00 65.96 91.58 25.62 
1 1 7/24/2008 10 bass 0.00 6.23 6.23 0.00 68.74 68.74 
3 1 7/24/2008 10 bass 0.00 0.00 0.00 21.16 98.57 77.41 
2 2 7/24/2008 10 bass 0.00 0.00 0.00 140.77 242.10 101.33 
2 3 7/24/2008 10 bass 0.00 13.56 13.56 159.75 272.68 112.93 
2 1 7/24/2008 10 bass 0.00 0.00 0.00 14.50 151.38 136.88 
3 4 7/24/2008 10 bass 0.00 0.00 0.00 166.05 276.35 110.30 
4 4 7/24/2008 10 bass 0.00 0.00 0.00 87.05 200.00 112.95 
2 4 7/24/2008 10 bjs 0.00 0.00 0.00 255.28 253.56 -1.72 
3 2 7/24/2008 10 bjs 0.00 0.00 0.00 132.65 167.77 35.12 
1 2 7/24/2008 10 bjs 0.00 0.00 0.00 244.03 300.00 55.97 
1 4 7/24/2008 10 bjs 0.00 0.00 0.00 202.44 297.92 95.48 
4 2 7/24/2008 10 bjs 0.00 0.00 0.00 72.44 199.61 127.17 
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Table B.1. continued 

tank time date treat exp 
dash 
pre 

dash 
post 

dash 
diff 

freeze 
pre 

freeze 
post 

freeze 
diff 

4 3 7/24/2008 10 bjs 0.00 0.00 0.00 149.66 282.71 133.05 
4 1 7/24/2008 10 bjs 0.00 0.00 0.00 62.34 195.44 133.10 
3 3 7/24/2008 10 bjs 0.00 0.00 0.00 0.00 165.40 165.40 
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Appendix C. Data from survivorship experiment 
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 Table C.1. Data from survivorship. Exphist refers to the exposure 
history of the sucker (bjs= bass odor plus alarm cue, bass=bass odor 
alone). Bass identifies the specific largemouth bass used in the trial.  

 

day exphist bass trial tank survived eaten  
1 bass 2 1 1 5 0

 1 bass 1 1 2 3 2
2 bass 2 1 1 3 2

 2 bjs 3 1 2 5 0
2 bjs 1 2 2 5 0  
3 bass 3 1 2 5 0
3 bass 1 2 2 5 0  
3 bjs 2 1 1 5 0

 4 bass 2 1 1 4 1
4 bjs 3 1 2 5 0  
4 bjs 1 2 2 5 0
5 bass 1 1 1 5 0  
5 bjs 3 1 1 5 0

 5 bjs 2 2 2 5 0
6 bass 3 1 1 3 0

 6 bjs 1 1 2 5 0
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