Extraskeletal Mesenchymal Chondrosarcoma

Komal Arora, MD; Nicole D. Riddle, MD

Extraskeletal mesenchymal chondrosarcoma (EMCS) is a rare malignant soft tissue tumor of chondroprogenitor cell origin. Mesenchymal chondrosarcoma (MCS) was first described by Lichtenstein and Bernstein in 1959. Two years after its original description, Dahlin and Henderson reported 9 cases from the files of the Mayo Clinic. Originally, it was considered restricted to bone, but that is no longer the case. More recent literature reports that 20% to 33% of these tumors occur at extraskeletal sites. The first case of MCS occurring at an extraskeletal site was described in 1964. Extraskeletal MCS represents about 1% of all chondrosarcomas. It is a high-grade malignancy with strong tendency for distant metastasis. The tumor has a characteristic biphasic histology comprising sheets of primitive mesenchymal cells with interspersed islands of well-differentiated hyaline cartilage. The tumor is diagnosed primarily on the basis of morphology because of a nonspecific immunoprofile and a general lack of availability of molecular diagnostics.

CLINICAL FEATURES

Most frequently, the tumor occurs in young adults during the second or third decades of life, with a slight preponderance in females. The tumor is found more commonly in the head and neck regions, including the orbit, brain, meninges, and soft tissues of the face, and the lower extremities. Based on the tumor location, 2 separate categories of EMCS have been previously described: one occurring in skeletal muscle and soft tissue and the other in the central nervous system and spinal cord.

PATHOGENESIS

Both the undifferentiated round or spindled cells and the differentiated cartilage are thought to originate from cartilage forming primitive mesenchyme. Studies performed on rat embryos demonstrated that the histologic architecture and the growth pattern of EMCS resemble the centripetal growth pattern of fetal cartilage. Subsequent immunohistochemical study by Wehrli et al confirmed that MCS had phenotypic features corresponding to the early condensational phase of cartilaginous differentiation. Their study showed Sox9, a master regulator of chondrogenesis, to be expressed immunohistochemically in both components of the tumor in 95.5% of cases.

RADIOLOGIC FINDINGS

The tumor appears as a well-circumscribed soft tissue mass with areas of granular, ring-and-arc, or irregularly shaped calcifications upon examination by computerized tomography. The noncalcified areas of the tumor are hypodense as compared with the surrounding soft tissue. These findings are not specific to EMCS, and can be seen in other benign cartilaginous tumors. When examined by magnetic resonance imaging, the calcified areas exhibit low intensity in both T1- and T2-weighted images, and the noncalcified areas show low intensity on T1- and high intensity on T2-weighted images. However, the magnetic resonance imaging findings may vary according to the patterns formed by the calcified and noncalcified areas. Focal low-intensity areas surrounded by high-intensity areas on T2-weighted imaging have been suggested to be characteristic of this tumor.

PATHOLOGIC FEATURES

Gross Examination

The tumors can range from 5 to 12 cm. Externally, they are often well circumscribed and covered with a thin fibrous capsule. The cut surface of the tumor is tan-white and soft to rubbery, with a glistening, lobulated appearance. Focal areas of hemorrhage and coarse calcifications are often seen.

Histologic Findings

A characteristic biphasic pattern, comprising sheets of undifferentiated round or spindled mesenchymal cells interspersed with islands of well-differentiated hyaline cartilage.
cartilage, is observed at low magnification (Figure 1). The undifferentiated mesenchymal cells have oval to elongated hyperchromatic nuclei and a scant amount of cytoplasm. These cells may be arranged in small clusters or around blood vessels in a hemangiopericytomatous pattern (Figure 2). The cartilaginous foci are usually well circumscribed with a well-defined interface with undifferentiated cells, or can rarely have poorly defined borders that gradually merge with the undifferentiated tumor cells. In addition, foci of osteoid formation and calcification can be seen. Other less common patterns include a predominant spindle cell component with variably prominent collagen formation (Figure 3).

Cytologic Findings

The diagnosis of EMCS can be challenging on cytology smears because of the rarity of this tumor. The smears are usually highly cellular and show clusters and scattered small, round blue cells with perivascular arrangement (Figure 4). These cells have a high nuclear to cytoplasmic ratio and round to oval hyperchromatic nuclei, with irregular nuclear membrane, fine to coarsely clumped chromatin, single to multiple nucleoli, and a small amount of pale cytoplasm. The background shows a fibrillary matrix infiltrated by tumor cells (Figure 5). A second population of larger tumor cells with abundant foamy cytoplasm containing multiple clear vacuoles embedded in abundant basophilic myxoid matrix can also be seen. Marked nuclear atypia and multiple irregular large nucleoli are common.

ANCILLARY STUDIES

Immunohistochemistry

Similar to other chondrosarcomas, the cartilaginous component is strongly positive for S100 protein. The undifferentiated cells show scant patchy positivity for S100 protein. As with other round cell tumors, the undifferentiated cells are positive for CD99 (strong membranous), neuron-specific enolase, and Leu-7, a fact limiting use of the fact limiting use of the CD99 antigen, and transducin-like enhancer of split 1 by immunohistochemistry. Synovial sarcoma usually lacks the cartilaginous component and is positive for keratin, epithelial membrane antigen, and muscle markers, are usually negative. However, rare cases showing scattered tumor cells with desmin, myogenin, and myoD1 positivity have also been described in tumors with areas of rhabdomyosarcomatous differentiation.

DIFFERENTIAL DIAGNOSIS

Mesenchymal chondrosarcoma can be very difficult to diagnose with certainty if no overt cartilaginous differentiation is visible in the tissue specimen, especially in small biopsy specimens. The differential diagnosis for EMCS includes synovial sarcoma, malignant solitary fibrous tumor, Ewing sarcoma, and other small, round blue cell tumors, particularly in biopsy specimens.

Synovial sarcoma usually lacks the cartilaginous component and is positive for keratin, epithelial membrane antigen, and transducin-like enhancer of split 1 by immunohistochemistry. Synovial sarcoma also shows the characteristic t(X;18) translocation, which is not seen in EMCS. Although Ewing sarcoma shows CD99 positivity, similar to EMCS, it lacks the cartilaginous component and can have either EWSR1-FLI1 or FUS-FLI1 gene fusions. A number of fusions have been reported, with the most common being EWSR1-FLI1. Malignant solitary fibrous tumor is usually patternless, lacks cartilaginous component, and is positive for CD34. However, the tumor is not always patternless and may be negative for CD34. Positivity for Sall6 immunohistochemical staining is helpful in diagnosing such cases of solitary fibrous tumor.

TREATMENT AND OUTCOME

Surgery involving wide resection followed by adjuvant chemotherapy is the mainstay of treatment. The role of adjuvant radiation therapy is not well defined. Addition of chemotherapy has been reported to improve survival.

In general, EMCS is an aggressive tumor with a propensity to metastasize. A recent retrospective review in children and young adults reported 68.2% 5-year disease-free survival.
Figure 1. Photomicrograph showing the biphasic component of mesenchymal chondrosarcoma. In the upper half of the image there is well-differentiated hyaline cartilage, and in the lower half the undifferentiated small cell component is seen (hematoxylin-eosin, original magnification ×120).

Figure 2. Photomicrograph showing hemangiopericytomatos pattern of tumor cells around blood vessels (hematoxylin-eosin, original magnification ×100).

Figure 3. Photomicrograph showing the spindle cell component of mesenchymal chondrosarcoma (hematoxylin-eosin, original magnification ×100).

Figure 4. Photomicrograph showing highly cellular cytology smears (Diff-Quik, original magnification ×100).

Figure 5. Photomicrograph showing round tumor cells having high nuclear to cytoplasmic ratio infiltrating a fibrillary matrix (Diff-Quik, original magnification ×400).

Figure 6. Photomicrograph of immunohistochemical staining of tumor cells with SOX9 (original magnification ×120).
and 88.9% overall survival at a median follow-up of 4.8 years. Another recent study found that the overall survival was worse for tumors in axial locations compared with appendicular and cranial locations. In this study, the presence of metastatic disease and tumor size were found to be the main predictors of poor outcome.

References